Math, asked by Rashivashist4733, 10 months ago

X=√2+1, then find x^2+1/x^2

Answers

Answered by Anonymous
3

Answer:

x =  \sqrt{2}  + 1

  \frac{1}{x}  =  \frac{1( \sqrt{2} - 1) }{ (\sqrt{2} + 1)( \sqrt{2}   - 1)}

 \frac{1}{x}  =  \frac{ \sqrt{2 } - 1}{ { \sqrt{2} }^{2} -  {1}^{2}  }

 \frac{1}{x}  =  \frac{ \sqrt{2}  - 1}{2 - 1}

 \frac{1}{x}  =  \sqrt{2}  - 1

now,

 x +  \frac{1}{x}  =  \sqrt{2}  + 1 +  \sqrt{2}  - 1

x +  \frac{1}{x}  = 2 \sqrt{2}

have to find out,

 {x}^{2}  +  { \frac{1}{x} }^{2}

 =  ( {x +  \frac{1}{x}) }^{2}  - 2x \frac{1}{x}

 =  ({2 \sqrt{2}) }^{2}  - 2

 = 8 - 2

 = 6

Similar questions