Math, asked by Anonymous, 4 months ago

x^2 +1/x^2 = 18 x - 1/x =

Answers

Answered by MagicalBeast
9

GIVEN :

\sf x^2 + \dfrac{1}{x^2}  \:=\: 18

TO FIND :

\sf x - \dfrac{1}{x}

IDENTITY USED :

(a - b)² = a² + b² - 2ab

SOLUTION :

\sf \implies  {\:\bigg\{\:x\:-\: \dfrac{1}{x} \: \bigg\}}^{2}  \:=\: (x)^2 \:+\: {(\: \dfrac{1}{x}\:)}^{2} - 2 \times x \times \dfrac{1}{x}\\\\\sf \implies {\:\bigg\{\:x\:-\: \dfrac{1}{x} \: \bigg\}}^{2}  \:=\: \bigg\{ (x)^2 \:+\: {(\: \dfrac{1}{x}\:)}^{2} \bigg\} - 2\\\\\sf Put \: value \: of \: (x)^2 \:+\: {(\: \dfrac{1}{x}\:)}^{2}  = 18 , \: in \: above \: equation\\\\\sf \implies {\:\bigg\{\:x\:-\: \dfrac{1}{x} \: \bigg\}}^{2} \:=\: (18) - 2

\sf \implies {\:\bigg\{\:x\:-\: \dfrac{1}{x} \: \bigg\}}^{2} \:=\: 16\\\\\\\sf \implies \:\bigg\{\:x\:-\: \dfrac{1}{x} \: \bigg\} \:=\: \sqrt{16}\\\\\\\sf \implies \:\bigg\{\:x\:-\: \dfrac{1}{x} \: \bigg\} \:=\: \bold{ \pm 4}

ANSWER :

\sf \bold{\: \bigg\{\: x - \dfrac{1}{x} \bigg\} \:= \pm \:4\:}

Similar questions