(x^2+1/x^2)-4(x+1/x)+6 please factorise
Answers
Answered by
0
Answer:
(√x - 1/√x)^4
Step-by-step explanation:
use a^2 b^2 = (a+b)^2 - 2ab
(x^2+1/x^2) = (x+1/x)^2 - 2x(1/x)
(x^2+1/x^2) = (x+1/x)^2 - 2
now put this in above ,
= [x+1/x)^2 - 2] - 4(x+1/x)+6
= (x+1/x)^2 - 4(x+1/x) + 4
now put (x+1/x) = y
then y^2 - 4y + 4
= (y - 2)(y - 2)
i.e, (x+1/x -2)(x+1/x -2)
= [(x-1)^2/x][(x-1)^2/x]
= (x-1)^4/x^2
or (√x - 1/√x)^4
Similar questions