Math, asked by abhinandangoel005, 1 year ago

x^2+1/x^2=7, find 2x^2-2/x^2

Answers

Answered by aami21
1

{\red{\bold{\huge{\mathfrak{Answer}}}}}

 {x}^{2}  + 1 = 7 {x}^{2}  \\ 1 = 6 {x}^{2}  \\  {x}^{2}  =  \frac{1}{6}

substitute it

 \frac{2 {x}^{2}  - 2}{2 {x}^{2} }  = \frac{2 \frac{1}{6} - 2 }{2 \times  \frac{1}{6} }  \\   \frac{ \frac{1}{3} - 2 }{ \frac{1}{3} }  =  \frac{ \frac{ - 5}{3} }{ \frac{1}{3} }  =  - 5

{\boxed{\blue{\huge{\bold{-5}}}}}


abhinandangoel005: I am a student it is my assignment
aami21: even i am a student
abhinandangoel005: You are Senior
aami21: so wt?
aami21: then post your ans with steps
aami21: thnx
Answered by abdul9838
5

 <b> <body bgcolor = "skyblue">

 \small \bf \red{hey \: mate \: here \: is \: ur \: ans} \\  \\ \small \bf \red{ \huge \: solution} \\  \\ \small \bf \red{ \huge \: ans \: is \: 6\sqrt{5} } \\  \\ \small \bf \red{ \underline{ \underline{step \: by \: step \: explaination}}} \\  \\ \small \bf \red{given \: that} \\  \\ \small \bf \red{ {x}^{2} +  \frac{1}{ {x}^{2} } = 7  } \\  \\ \small \bf \red{ \underline{as \: we \: can \: write}} \\  \\ \small \bf \red{ {x}^{2}  +  \frac{1}{ {x}^{2} }  = (x +  \frac{1}{x} )^{2}  - 2 \times x \times  \frac{1}{x} } \\  \\  \\  \\ \small \bf \red{here \: it \: does \: not \: matter \: what \: is \: the \: } \\ \small \bf \red{power \: of \: x} \\  \\ \small \bf \red{ \huge \: so} \\  \\ \small \bf \red{ \underline{as \: we \: can \: wite}} \\  \\  \\  \\ \small \bf \red{ {x}^{n}  +  \frac{1}{ {x}^{n} } = k } \\  \\ \small \bf \red{and \: it \: is \: equall \: } \\  \\ \small \bf \red{(x +  \frac{1}{x} )^{2} = k - 2 } \\  \\ \small \bf \red{but \: here \: k = 7 \: ( \underline{according \: to \: question)}} \\  \\ \small \bf \red{now} \\  \\ \small \bf \red{(x -  \frac{1}{x})^{2} + 2 \times x \times  \frac{1}{x}  = {x}^{2} -  \frac{1}{ {x}^{2} }   } \\  \\ \small \bf \red{using \: this \: formula} \\  \\ \small \bf \red{ {x}^{2}  -  \frac{1}{ {x}^{2} }  =  \sqrt{{k}^{2} - 4 } } \\  \\ \small \bf \red{ { {x}^{2}  -  \frac{1}{ {x}^{2} } =  \sqrt{ {7}^{2} - 4 }   }} \\  \\ \small \bf \red{ {x}^{2} -  \frac{1}{ {x}^{2}  }   =  \sqrt{49 - 4} } \\  \\ \small \bf \red{ {x}^{2}  -  \frac{1}{ {x}^{2} } =  \sqrt{45}  } \\  \\ \small \bf \red{ {x}^{2}  -  \frac{1}{ {x}^{2} }  = 3 \sqrt{5} } \\  \\ \small \bf \red{here \: the \: value \: of} \\  \\ \small \bf \red{ {x}^{2}  -  \frac{1}{ {x}^{2} } = 3 \sqrt{5}  } \\  \\ \small \bf \red{but} \\  \\ \small \bf \red{cofficient \: of \:  {x}^{2}  = 2} \\  \\ \small \bf \red{ \huge \: so} \\  \\ \small \bf \red{2 \times 3 \sqrt{5}  = 6 \sqrt{5} }  \\  \\ \small \bf \red{ \huge \: ans \: is \: 6 \sqrt{5} }

Similar questions