Math, asked by anupdhiman490, 4 days ago

x ^ 2 + 1/(x ^ 2) = 7 find the value of x + 1/x, x > 0 .





I need answer in paper and step by step​

Answers

Answered by anindyaadhikari13
3

Solution:

Given That:

 \rm \longrightarrow {x}^{2} + \dfrac{1}{ {x}^{2} } = 7,  \: x > 0

Adding 2 to both sides, we get:

 \rm \longrightarrow {x}^{2} + \dfrac{1}{ {x}^{2} } + 2 = 7 + 2

 \rm \longrightarrow {x}^{2} + \dfrac{1}{ {x}^{2} } + 2 = 9

Can be written as:

 \rm \longrightarrow {(x)}^{2} +  \bigg(\dfrac{1}{x} \bigg)^{2} + 2 \times x \times \dfrac{1}{x}  = 9

Using identity a² + b² + 2ab = (a + b)², we get:

 \rm \longrightarrow \bigg(x + \dfrac{1}{x} \bigg)^{2} = 9

 \rm \longrightarrow x + \dfrac{1}{x}  = \sqrt{9}

 \rm \longrightarrow x + \dfrac{1}{x}  =  \pm 3

Since, we know that:

 \rm \longrightarrow x > 0

 \rm \longrightarrow x + \dfrac{1}{x}  > 0

Therefore:

 \rm \longrightarrow x + \dfrac{1}{x}  = 3

★ Which is our required answer.

Learn More:

Algebraic Identities.

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + 3ab(a + b) + b³
  • (a - b)³ = a³ - 3ab(a - b) - b³
  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)
  • (x + a)(x + b) = x² + (a + b)x + ab
  • (x + a)(x - b) = x² + (a - b)x - ab
  • (x - a)(x + b) = x² - (a - b)x - ab
  • (x - a)(x - b) = x² - (a + b)x + ab
Similar questions