Math, asked by adiiiii23, 1 year ago

x^2+1/x^2=7, find x-1/x​

Answers

Answered by tejasgupta
3

Answer:

√5

Step-by-step explanation:

x^2 + \dfrac{1}{x^2} = 7\\\\\\\text{Taking $\left( x - \dfrac{1}{x} \right)^2$, we have}\\\\\\\left( x - \dfrac{1}{x} \right)^2 = x^2 + \dfrac{1}{x^2} - 2(x) \left( \dfrac{1}{x} \right)\\\\\\\implies x - \dfrac{1}{x} = \pm \: \sqrt{7 - 2}\\\\\\= \boxed{\pm \: \sqrt{5}}

Answered by skh2
1
 {x}^{2} + \frac{1}{ {x}^{2} } = 7 \\ \\ \\{x}^{2} + \frac{1}{ {x}^{2} } - 2 = 7 - 2 \\ \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } - 2.x.\frac{1}{x} = 7 - 2 \\ \\ \\ {(x - \frac{1}{x})}^{2} = 5 \\ \\ \\x - \frac{1}{x} = \pm \sqrt{5}

\rule{200}{2}

Therefore :-

 \boxed{\bold{x- \frac{1}{x}= \pm \sqrt{5}}}

\rule{200}{2}

Things used :-

1)Identities :-

 (x- \dfrac{1}{x})^{2}= x^{2}+ \dfrac{1}{x^{2}} - 2.x. \frac{1}{x}

2)Solving linear equations and transposing of square into square Root on opposite side.

\rule{200}{2}
Similar questions