Math, asked by rTanvi111, 1 year ago

x^2 +1/x^2=7 , x is greater than 0 find the value of x3+1/x3 and x-1/x

Answers

Answered by siddhartharao77
3
Given x^2 + 1/x^2 = 7

We know (x + 1/x)^2 = x^2 + 1/x^2 + 2

                                  = 7 + 2

                                  = 9.

                (x + 1/x) = 3.

On cubing both sides, we get

(x + 1/x)^3 = 3^3.

x^3 + 1/x^3 + 3(x + 1/x) = 27

x^3 + 1/x^3 + 3(3) = 27

x^3 + 1/x^3 + 9 = 27

x^3 + 1/x^3 = 27 - 9

x^3 + 1/x^3 = 18.   ------------------- (1)



Given x^2 + 1/x^2 = 7

We know that (x - 1/x)^2 = x^2 + 1/x^2 - 2 * 1/x

                                         = x^2 + 1/x^2 - 2

                                         = 7 - 2

                                         = 5.

            Then (x - 1/x) = root 5.  --------------- (2)

.


From (1) & (2),

The value of x^3 + 1/x^3 = 18.

The value of x - 1/x = root 5.



Hope this helps!
Answered by Anonymous
8




 x^2 + 1
_______. = (x + 1/x)^2 = x^2 + 1/x^2 + 2
x ^ 2 + 2
= 7 + 2 = 9





                (x + 1 )
______
x = 3.

, we get

*************
(x + 1/x)^3 = 3^3.

x^3 + 1
______
x^3 + 3(x + 1/x). = 27


*************************************
x^3 + 1
______
x^3 + 3(3) = 27


**********************

x^3 + 1/x^3 + 9 = 27

x^3 + 1
________
x^3. = 27 - 9

x^3 + 1/x^3 = 18.   

**********************

and x^2 + 1/x^2 = 7



(x - 1/x)^2 = x^2 + 1/x^2 - 2 * 1/x

                                         = x^2 + 1/x^2 - 2

                                         = 7 - 2

                                         = 5.

       ------------------------------------

.


The value of x^3 + 1/x^3 = 18.

The value of x - 1/x = root 5.
Similar questions