Math, asked by chaitanya4070, 1 year ago

x^2+1/x^2, if X=2+√3​

Answers

Answered by BrainlyConqueror0901
106

Answer:

\huge{\boxed{\boxed{\sf{x^{2}+\frac{1}{x^{2}}=14.07}}}}

Step-by-step explanation:

\huge{\boxed{\boxed{\underline{\sf{SOLUTION-}}}}}

X=2+√3 (given)

To find

x^2+1/x^2=?

 {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  = ) {(2 +  \sqrt{3} })^{2}  +  \frac{1}{ {(2 +  \sqrt{3} })^{2} }  \\  = )4   +  (\sqrt{3})^{2}  + 4 \sqrt{3}  +  \frac{1}{ 4   +  (\sqrt{3})^{2}  + 4 \sqrt{3} }  \\  = )4 + 3 + 4 \sqrt{3}  +  \frac{1}{4 + 3 + 4 \sqrt{3} }  \\  = )7 + 4 \times 1.73 +  \frac{1}{7 + 4 \times 1.73}  \\  = )7 +6.9 2 +  \frac{1}{7 + 6.92}  \\  = )13.92 +  \frac{1}{13.92}  \\  = ) \frac{(13.92)^{2}  + 1}{13.92}  \\ we \: take \: 13.92 = 14(approx) \\  = ) \frac{(14)^{2} + 1 }{14}  \\  = ) \frac{196 + 1}{14}  \\  = ) \frac{197}{14}  \\  = ) 14.07

\huge{\boxed{\boxed{\sf{x^{2}+\frac{1}{x^{2}}=14.07}}}}

Similar questions