Math, asked by shashank13smg, 11 months ago

x^2+11x+30
×^2+6x-72

Answers

Answered by Brâiñlynêha
5

\huge\mathbb{SOLUTION:-}

●we have to factorise the Given expression

\sf\underline{\pink{\:\:\:\: Solution:-\:\:\:\:\:}}

\sf 1)\:\: x{}^{2}+11x+30\\ \\ \sf:\implies x{}^{2}+(6+5)x+30\\ \\ \sf:\implies x{}^{2}+6x+5x+30\\ \\ \sf:\implies x(x+6)+5(x+6)\\ \\ \sf:\implies{\blue{ (x+6)(x+5)}}

  • Now the 2nd question :-

\sf 2)\:\: x{}^{2}+6x-72\\ \\ \sf:\implies x{}^{2}+(12-6)x-72\\ \\ \sf:\implies x{}^{2}+12x-6x-72\\ \\ \sf:\implies x(x+12)-6(x+12)\\ \\ \sf:\implies{\purple{ (x+12)(x-6)}}

Answered by EliteSoul
10

Answer:

\bold\red{Solution↓}

Factorize:-

  • \sf\green {{x}^{2} + 11x + 30 }
  • \sf\purple {{x}^{2} +6x - 72}

\rule{300}{1}

\sf a){x}^{2} + 11x + 30

\sf {x}^{2} + 5x + 6x + 30

\sf x(x+5) + 6(x+5)

{\boxed{\sf{(x+6)(x+5)}}}

\rule{300}{1}

\sf b) {x}^{2} + 6x - 72

\sf {x}^{2} + 12x - 6x - 72

\sf x(x+12)-6(x+12)

{\boxed{\sf{(x-6)(x+12)}}}

Similar questions