Math, asked by bhrugurshi, 2 months ago

x^2+12x+27 divided by (x+3)​

Answers

Answered by ariRongneme
1

Answer:

Hope it will help you. mark me brainliest if you find it useful

sorry for the inconvenience. The second answer is the right solution

Attachments:
Answered by mathdude500
3

There are two methods to solve this question

1. Method of factorization

2. Method of Long Division

\large\underline{\sf{Solution- \: method \:  - 1}}

\rm :\longmapsto\:\dfrac{ {x}^{2}  + 12x + 27}{x + 3}

Using the concept of splitting of middle terms,

\rm  \:  =  \: \:\dfrac{ {x}^{2}  + 9x + 3x + 27}{x + 3}

\rm  \:  =  \: \:\dfrac{x(x + 9) + 3(x + 9)}{x + 3}

\rm  \:  =  \: \:\dfrac{(x + 3)(x + 9)}{x + 3}

\rm  \:  =  \: \:x + 9

Hence,

\bf :\longmapsto\:\dfrac{ {x}^{2}  + 12x + 27}{x + 3}  = x + 9

\large\underline{\sf{Solution- \: method \:  - 2}}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{ \:  \:  \:  \:  \:  \:  \:  \: x  + 9 \:  \:  \:  \:  \:  \:  \:  \: }}}\\ {\underline{\sf{x + 3}}}& {\sf{\: {x}^{2} + 12x + 27 \:\:}} \\{\sf{}}& \underline{\sf{  - {x}^{2} - 3x   \:  \:  \:  \:  \:  \:  \: \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 9x + 27 \:  \:  \:  \:   \:  \:  \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  \: \:  - 9x - 27\:  \:  \:  \:  \:  \: \:\:}}  \\ {\underline{\sf{}}}& {\sf{\:\: \: \:  \:0\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}

Hence,

\bf :\longmapsto\:\dfrac{ {x}^{2}  + 12x + 27}{x + 3}  = x + 9

Additional Information :-

Splitting of middle terms :-

In order to factorize  ax² + bx + c we have to find numbers p and q such that p + q = b and pq = ac.

After finding p and q, we split the middle term in the given quadratic expression as px + qx and get the required factors by grouping the terms.

Similar questions