x^2 + 14x + 49 + 81x^4 + 4y^4
Answers
Step-by-step explanation:
STEP
1
:
Equation at the end of step 1
(y2) (y2) y
(((18•(x2))-((((18•————)•(x2))•————)•(x2)))-(((7x•—)•(x2))•y))+32xy2
14 7 9
STEP
2
:
y
Simplify —
9
Equation at the end of step
2
:
(y2) (y2) y
(((18•(x2))-((((18•————)•(x2))•————)•(x2)))-(((7x•—)•x2)•y))+32xy2
14 7 9
STEP
3
:
Multiplying exponential expressions :
3.1 x1 multiplied by x2 = x(1 + 2) = x3
Equation at the end of step
3
:
(y2) (y2) 7x3y
(((18•(x2))-((((18•————)•(x2))•————)•(x2)))-(————•y))+32xy2
14 7 9
STEP
4
:
y2
Simplify ——
7
Equation at the end of step
4
:
(y2) y2 7x3y2
(((18•(x2))-((((18•————)•(x2))•——)•x2))-—————)+32xy2
14 7 9
STEP
5
:
y2
Simplify ——
14
Equation at the end of step
5
:
y2 y2 7x3y2
(((18•(x2))-((((18•——)•x2)•——)•x2))-—————)+32xy2
14 7 9
STEP
6
:
Equation at the end of step 6
9x2y2 y2 7x3y2
(((18•(x2))-((—————•——)•x2))-—————)+32xy2
7 7 9
STEP
7
:
Multiplying exponential expressions :
7.1 x2 multiplied by x2 = x(2 + 2) = x4
Equation at the end of step
7
:
9x4y4 7x3y2
(((18 • (x2)) - —————) - —————) + 32xy2
49 9
STEP
8
:
Equation at the end of step
8
:
9x4y4 7x3y2
(((2•32x2) - —————) - —————) + 32xy2
49 9
STEP
9
:
Rewriting the whole as an Equivalent Fraction
9.1 Subtracting a fraction from a whole
Rewrite the whole as a fraction using 49 as the denominator :
(2•32x2) (2•32x2) • 49
(2•32x2) = ———————— = —————————————
1 49
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
Adding fractions that have a common denominator :
9.2 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
(2•32x2) • 49 - (9x4y4) 882x2 - 9x4y4
——————————————————————— = —————————————
49 49
Equation at the end of step
9
:
(882x2 - 9x4y4) 7x3y2
(——————————————— - —————) + 32xy2
49 9
I HOPE IT HELPS U