Math, asked by Ajeetkumarsaini, 6 months ago

x^2-(√2+1)x+√2=0
solve the equation by completing the square

Answers

Answered by rajeevr06
1

Answer:

 {x}^{2}  - ( \sqrt{2}  + 1)x +  \sqrt{2}  = 0

 {x}^{2}  - 2x( \frac{ \sqrt{2}  + 1}{2} ) + (\frac{ \sqrt{2}  + 1}{2}) {}^{2}  +  \sqrt{2}  - (\frac{ \sqrt{2}  + 1}{2}) {}^{2}  =  0

(x - \frac{ \sqrt{2}  + 1}{2}) {}^{2}  +  \sqrt{2}  -  \frac{3 + 2 \sqrt{2} }{4}  = 0

(x - \frac{ \sqrt{2}  + 1}{2}) {}^{2}  +  \frac{4 \sqrt{2} - 3 - 2 \sqrt{2}  }{4}  = 0

(x - \frac{ \sqrt{2}  + 1}{2}) {}^{2}  =  \frac{3 - 2 \sqrt{2} }{4}  = ( \frac{ \sqrt{2} - 1 }{2} ) {}^{2}

x  - \frac{ \sqrt{2}  + 1}{2} = \frac{ \sqrt{2}   -  1}{2} \: or \:  - \frac{ \sqrt{2}   -  1}{2}

x = \frac{ \sqrt{2}  + 1}{2} + \frac{ \sqrt{2}   -  1}{2} \: or \: \frac{ \sqrt{2}  + 1}{2} - \frac{ \sqrt{2}   -  1}{2}

x =  \sqrt{2}  \: \:  or \:  \: 1

Ans.

Similar questions