Math, asked by sajal3024, 1 year ago

(x+2) ^2=-12 (y+1) find the vertex and directrix of parabola

Answers

Answered by Inflameroftheancient
5
HELLO FRIEND HERE IS YOUR ANSWER,,,
Easy question but a little lengthy,,,,,

FOR PARABOLA VERTEX::::::::

For a parabola vertex, given ,,

(x + {2})^{2} = 12(y + 1)

First off,,,, Isolating the given variable "y".

Switching the given sides.

(x + {2})^{2} = 12(y + 1) \\ \\ 12(y + 1) = {(x + 2)}^{2}

Dividing both the sides by 12 in the denominator,,,,

 \frac{12(y + 1)}{12} = \frac{ {(x + 2)}^{2} }{12} \\ \\

Simplifying the nominator and the denominator and subtracting "1" from both left and right hand sides,,,,

y + 1 = \frac{ {(x + 2)}^{2} }{12} \\ \\ \\ y + 1 - 1 = \frac{ {(x + 2)}^{2} }{12} - 1 \\ \\ \\ y = \frac{ {(x + 2)}^{2} }{12} - 1

Writing and hence rearranging it into the standard format of equation,, that is,,

y = a {x}^{2} + bx + c
y = \frac{1 \times {x}^{2} }{12} + \frac{1 \times x}{3} + \frac{1}{3} - 1 \\

For a given parabola

a {x}^{2} + bx + c

The vertex's "x" equals to,,

 - \frac{ b}{2a} \\

Here,,

a = \frac{1}{12} \\ \\b = \frac{1}{3}

Substituting the given values,,

x = \frac{ ( - \frac{1}{3}) }{2 \times ( \frac{1}{12})} \\ \\

Applying the fraction rule of

 \frac{ - a}{b} = - ( \frac{a}{b} ) \\
 = - \frac{ \frac{1}{3} }{2 \times \frac{1}{12} } \\

Applying fraction rule of

 \frac{ \frac{b}{c} }{a } = \frac{b}{c \times a} \\

Therefore,,

 = \frac{ \frac{1}{3} }{2 \times \frac{1}{12} } = \frac{1}{3 \times 2 \times \frac{1}{12} } \\ \\ \\ = - \frac{1}{6 \times \frac{1}{12} } \\ \\ \\ = \frac{1}{ - \frac{1 \times 6}{12} } \\ \\ \\ = - \frac{1}{ \frac{6}{12} } \\ \\ \\ = - \frac{1}{ \frac{1}{2} } \\ \\ \\ = - \frac{2}{1} \\ \\ = - 2

Therefore,,,,

\boxed{x = - 2}

Now putting the value of x = - 2 to find the value of "y".

y = \frac{1 \times {( - 2)}^{2} }{12} + \frac{1 \times ( - 2)}{3} + \frac{1}{3} - 1 \\ \\ \\ y = \frac{ {2}^{2} }{12} + \frac{ - 1 \times 2 + 1}{3} - 1 \\ \\ \\ y = \frac{ {2}^{2} }{ {2}^{2} \times 3} - \frac{2 + 1}{3} - 1 \\ \\ \\ y = \frac{1}{3} - \frac{1}{3} - 1 \\ \\ \\ y = 0 - 1 \\ \\ \\ y = - 1

Value of Y is,,,,

\boxed{y = - 1}

Therefore the parabola vertex is,,,,,

\implies

(- 2, -1)

If a < 0 , then the vertex is a maximum value .

If a > 0 , then the vertex is a minimum value.

Since ,,

a = \frac{1}{12} \\

Therefore ,,,,

Minimum (- 2 , -1)

PARABOLA DIRECTRIX::::::

Parabola directrix is where a parabola is the locus of points such that the distance to a point (the focus itself) equals the distance to a line ( the directrix).

The standard equation for up-down facing parabola with vertex "x" at (h , k) and a focal length | p | , is,,

4p(y - k) = {(x - h)}^{2} \\

Therefore,,,

 = {(x + 2)}^{2} = 12(y + 1) \\ \\ \\ = 12(y + 1) = {(x + 2)}^{2} \\ \\ \\

By taking a factor of "12".

 = 12(y + \frac{12}{12} ) = {(x + 2)}^{2} \\ \\ \\ = 12(y + 1) = {(x + 2)}^{2}

By a taking a factor of "4".

4 \times \frac{12}{4} (y + 1) = {(x + 2)}^{2} \\ \\ \\ 4 \times 3(y + 1) = {(x + 2)}^{2} \\ \\ \\ 4 \times 3(y - ( - 1)) = {(x - ( - 2))}^{2} \\ \\ \\

THERFORE,,,,,,,

(h , k) = (-2 , -1) , and , p = 3.

Parabola here is symmetric around the y - axis and so the directrix is a line parallel to the x - axis, a distance of "- p" from the center (-2 , -1) y - coordinate.

y = - 1 - p \\ \\ \\ y = - 1 - 3 \\ \\ \\ y = - 4

THERFORE,,,,

\boxed{y = -4}

HOPE IT HELPS AND SOLVES YOUR DOUBTS REGARDING THIS!!!!!

DavidOtunga: Thanks for the answer.
Similar questions