Math, asked by mansijangid294, 9 months ago

[x + 2]² – 9[x] + 2 = 0, where [  ] denotes the greatest integer function​

Answers

Answered by saket3422
8

Answer:

[ X + 2 )*2 -9 [x] + 2 = 0

- X*2 - 4X - 4 +9X - 2

- X*2 + 5X -6

- X*2 - X + 6X + 6 =0

- X ( X + 1 ) + 6 ( X + 1 )

( X + 1 ) ( - X + 6 )

Answered by shadowsabers03
6

The greatest integer function is defined in such a way that,

\longrightarrow [x]=a\quad\iff\quad x\in[a,\ a+1)\quad\quad\!\forall a\in\mathbb{Z}

We're given the equation,

\longrightarrow [x+2]^2-9[x]+2=0\quad\quad\dots(1)

Let,

\longrightarrow [x]=a\quad\iff\quad x\in[a,\ a+1)

Then we get,

\longrightarrow [x+2]=a+2\quad\iff\quad x+2\in[a+2,\ a+3)

Then (1) becomes,

\longrightarrow (a+2)^2-9a+2=0

\longrightarrow a^2+4a+4-9a+2=0

\longrightarrow a^2-5a+6=0

\longrightarrow a^2-2a-3a+6=0

\longrightarrow a(a-2)-3(a-2)=0

\longrightarrow (a-2)(a-3)=0

\Longrightarrow a\in\{2,\ 3\}

If a=2,

\longrightarrow x\in[a,\ a+1)

\longrightarrow x\in[2,\ 2+1)

\longrightarrow x\in[2,\ 3)\quad\quad\dots(2)

If a=3,

\longrightarrow x\in[a,\ a+1)

\longrightarrow x\in[3,\ 3+1)

\longrightarrow x\in[3,\ 4)\quad\quad\dots(3)

On combining (2) and (3), we get,

\longrightarrow x\in[2,\ 3)\cup[3,\ 4)

\longrightarrow\underline{\underline{x\in[2,\ 4)}}

Similar questions