Math, asked by itzdivyanshi61, 2 months ago

x^2 - 2 divided by x^3 - 3x^2 + 5x - 3

Answers

Answered by itzRupakshi294
11

Answer:

Similarly, quadratic polynomials and cubic polynomials have a degree of 2 and 3 respectively. A polynomial with only one term is known as a monomial. A monomial containing only a constant term is said to be a polynomial of zero degrees. A polynomial can account to null value even if the values of the constants are greater than zero.

Step-by-step explanation:

Your answer divya :)

Answered by XxHappiestWriterxX
34

Concept :

  • Polynomials = Poly (means many) + nomials (means terms).

  • Thus, a polynomial contains many terms.

  • Thus, a type of algebraic expression with many terms having variables and coefficients is called polynomial.

Let's Start :

\begin{gathered} \: \: \: \: \: \: \: \: \: \: \: \:  {x }^{2}  - 2\overline{)  \cancel{{x}^{3}} - 3 {x}^{2} + 5x - 3  (}  {x - 3}\\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\underline{  \cancel{ {x}^{3}}  \:\: \downarrow  }   \:  \: - 2x\\ \: \: \: \: \: \: \: \: \: \: \: \: \: \:   \cancel{- 3 {x}^{2} } + 7x - 3 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \underline{   \cancel{- 3 {x }^{2}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   + 6} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \underline{\: \: \: \: \: \ \: \: \: 7x - 9}\end{gathered}

Step 1 :

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{ \boxed{ \sf{ \purple{  \cancel\frac{ {x}^{3} }{ {x}^{2}  }  = x}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{ \boxed{ \sf{ \purple{x( {x}^{2} - 2) }}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{ \boxed{ \sf{ \purple{ {x}^{3} - 2x }}}}

Step 2 :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{ \boxed{ \sf{ \red{   \cancel \frac{ - 3 {x}^{2} }{ {x}^{2} } =  - 3 }}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{ \boxed{ \sf{ \red{ - 3( {x}^{2} - 2) }}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{ \boxed{ \sf{ \red{ - 3 {x}^{2} + 6 }}}}

So your answer is completed :)

Similar questions