Math, asked by jayadev0, 10 months ago

x^2 + 25x -306 =0 completing square method​

Answers

Answered by Anonymous
4

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{Roots \ are \ 9 \ and -34}

\sf\orange{Given:}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{x^{2}+25x-306=0}}

\sf\pink{To \ find:}

\sf{The \ roots \ of \ the \ equation.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{x^{2}+25x-306=0}}

\sf{\implies{Here, \ Coefficient \ of \ x^{2}=1}}

\sf{\implies{Coefficient \ of \ x=25}}

\sf{\implies{Constant=-306}}

\sf{\implies{x^{2}+25x=306}}

_______________________________

\sf{\implies{(\frac{1}{2}\times \ Coefficient \ of \ x)^{2}}}

\sf{\implies{(\frac{1}{2}\times25)^{2}}}

\sf{\implies{(\frac{25}{2})^{2}}}

\sf{\implies{\frac{625}{4}}}

_______________________________

\sf{Add \ \frac{625}{4} \ on \ both \ sides}

\sf{\implies{x^{2}+25x+\frac{625}{4}=306+\frac{625}{4}}}

\sf{\implies{x^{2}+25x+\frac{625}{4}=\frac{1224+625}{4}}}

\sf{\implies{(x+\frac{25}{2})^{2}=\frac{1849}{4}}}

\sf{Taking \ square \ root \ of \ both \ sides}

\sf{\implies{x+\frac{25}{2}=\frac{43}{2} \ or \ -\frac{43}{2}}}

\sf{\implies{x=\frac{43}{2}-\frac{25}{2} \ or \ -\frac{43}{2}-\frac{25}{2}}}

\sf{\implies{x=\frac{18}{2} \ or \ -\frac{68}{2}}}

\sf{\implies{x=9 \ or \ -34}}

\sf\purple{\tt{\therefore{Roots \ are \ 9 \ and -34}}}

Similar questions