Math, asked by divyanshubhalerao, 9 months ago

x^2-25x+84=0. Solve by factorization method Plz help me

Answers

Answered by tanejakomal046
0

Answer:

x=21,-4

Step-by-step explanation:

  • -25x+84=0
  • -21x-4x+84=0
  • x(x-21)+4(x-21)=0
  • (x-21)(x+4)=0
  • (x-21)=0 (x+4)=0
  • x= 21 x= -4

follow me for maths answers ❣️ rate my answer 5 mark me as a brainliest ❣️

Answered by Abhishek474241
1

✪AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • A polynomial
  • X²-25x+84=0

{\sf{\green{\underline{\large{To\:Find}}}}}

  • Factors of the polynomial

Relationship between cofficient

{\sf{\pink{\underline{\Large{Explanation}}}}}

X

we have to spilt the middle term in such a way that the product become -20 and sum become -x

X²-25x+84=0

=>X²-21x-4x+84=0

=>x(x-21)-4(x-21)=0

=>(x-4) (x-21)

=>x=4,21

Additional Information

Let the zeroes of the polynomial be\tt\alpha{and}\beta

Then,

\rightarrow\tt\alpha{+}\beta{=}\frac{-b}{a}

&

\rightarrow\tt\alpha{\times}\beta{=}\frac{c}{a}

Here,

a=1

b=-12

C=84

\rightarrow\tt\alpha{+}\beta{=}\dfrac{12}{1}

\rightarrow\tt\alpha{+}\beta{=}\dfrac{Cofficient\:of\:X}{Cofficient\:of\:x^2}=

&

\rightarrow\tt\alpha{\times}\beta{=}\dfrac{84}{1}

\rightarrow\tt{\large\alpha{\times}\beta{=}\dfrac{Constant\:term}{Cofficient\:of\:x^2}}

Hence,relation verified

Similar questions