Math, asked by golachelsea9362, 1 year ago

x^2-2ax-(4b^2-a^2)=0 solve for x using quadratic equation

Answers

Answered by vanshnegi31
38

bro here is your answer

x2 - 2ax - (4b2 - a2) = 0

Using the splitting middle term - the middle term of the general equation

is divided in two such values that:

Product = a.c

For the given equation a = 1 b = - 2a c = - (4b2 - a2)

= 1. - (4b2 - a2)

= - (4b2 - a2)

And either of their sum or difference = b

= - 2a

Thus the two terms are (2b - a) and - (2b + a)

Difference = 2b - a - 2b - a

= - 2a

Product = (2b - a) - (2b + a)

(∵ using a2 - b2 = (a + b) (a - b))

= - (4b2 - a2)

x2 - 2ax - (4b2 - a2) = 0

⇒ x2 + (2b - a)x - (2b + a)x - (2b - a)(2b + a) = 0

⇒ x[x + (2b - a)] - (2b + a)[x + (2b - a)] = 0

⇒ [x + (2b - a)] [x - (2b + a)] = 0

⇒ [x + (2b - a)] = 0 or [x - (2b + a)] = 0

⇒ x = (a - 2b) or x = (a + 2b)

Hence the roots of given equation are (a - 2b) or x = (a + 2b)

Answered by Raghav1330
17

Given:

x²-2ax-(4b²- a²)= 0

To Find

 the value of x

Solution:

⇒ x= -b± √b²- 4ac/2a

⇒ x= -(-2a) ± √(-2a)²- 4(b² + a²)/2.1

⇒ x= 2a ± √4a² + 16b² + 4a²/2

⇒ x= 2a ± √16b²/2

⇒ x= 2a ± 4b/2

⇒ x= 2(a ± 2b)/2

x= a ± 2b

Therefore, the value of x is a ± 2b.

Similar questions