Math, asked by JAYANTHP4180, 11 months ago

(X^2+2x-3) logx derivative

Answers

Answered by Sharad001
3

Question :-

Find the derivative of -

 \to \sf \:  \:  ( {x}^{2}  + 2x - 3) \log x \\

Answer :-

\to \boxed{ \sf  \frac{dy}{dx}  =  \log x(2x + 2) + x + 2 -  \frac{3}{x} } \:

Used Concept :-

Here we will use product rule of derivative i.e

 \to \sf  \frac{d}{dx}  \: u \: v  = u \:  \frac{dv}{dx}  + v \:  \frac{du}{dx}  \\

Here , u and v are function of x .

Solution :-

We have and let ,

 \to \sf \: y = ( {x}^{2}  + 2x - 3) \log x \\  \\ \sf differentiate \: with \: respect \: to \: x \\  \:  \\  \to  \sf \frac{dy}{dx}  = ( \log x) \frac{d}{dx} ( {x}^{2}   +   2x - 3) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf +(  {x}^{2}  + 2x - 3) \frac{d}{dx} \log x  \\  \\  \boxed{ \because \sf  \:  \frac{d}{dx} {x}^{n}   = n {x}^{n - 1} \:  \:  \: }  \\  \boxed{\sf  \because \:  \frac{d}{dx}  \log x =  \frac{1}{x}  \: \:  \:    \: \:  } \\     \boxed{\sf\because \frac{d}{dx} constant = 0  } \\ \\   \to \sf \frac{dy}{dx}  =  \log x(2x + 2) +  \frac{ {x}^{2}  + 2x - 3}{x}  \\ \bf  or \\ \\    \to \boxed{ \sf  \frac{dy}{dx}  =  \log x(2x + 2) + x + 2 -  \frac{3}{x} }

Similar questions