Math, asked by reddysanthosh542, 3 months ago

x^2-2xy+3y^2dx+y^2+6xy-x^2dy by using homogeneous differential equation​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

( {x}^{2} - 2xy + 3 {y}^{2}  )dx + ( {y}^{2}  + 6xy -  {x}^{2} )dy = 0 \\

 \implies \frac{dy}{dx}  =  \frac{ {x}^{2}   - 2xy +  3{y}^{2} }{ {x}^{2} - 6xy -  {y}^{2}  }  \\

Let \:  \: y  = vx \\  \implies \frac{dy}{dx}  = v + x \frac{dv}{dx}

 \implies \: v +  x\frac{dv}{dx}  =  \frac{ {x}^{2}   - 2v {x}^{2}  +  3{v}^{2} {x}^{2}  }{ {x}^{2} - 6vx-  {x}^{2} {v}^{2}   }  \\

 \implies \: v +  x\frac{dv}{dx}  =  \frac{ {x}^{2} (1  - 2v  +  3{v}^{2} )  }{ {x}^{2}(1 - 6v- {v}^{2} )  }  \\

 \implies \:   x\frac{dv}{dx}  =  \frac{ (1  - 2v  +  3{v}^{2} )  }{ (1 - 6v- {v}^{2} )  } - v  \\

 \implies \:   x\frac{dv}{dx}  =  \frac{ (1  - 3v  + 9{v}^{2}   +  {v}^{3} )  }{ (1 - 6v- {v}^{2} )  } \\

 \implies \frac{1 - 6v -  {v}^{2} }{ {v}^{3} + 9 {v}^{2}   - 3v + 1} dv =  \frac{dx}{x}  \\

Integrating both sides,

 \implies  \int\frac{1 - 6v -  {v}^{2} }{ {v}^{3} + 9 {v}^{2}   - 3v + 1} dv =   \int\frac{dx}{x}  \\

 \implies  -  \int\frac{ {v}^{2}  + 6v - 1}{ {v}^{3} + 9 {v}^{2}   - 3v + 1} dv =   \int\frac{dx}{x}  \\

Let \:  \:  {v}^{3}  + 9 {v}^{2}  - 3v + 1 = t  \\ \implies(3 {v}^{2}  + 18v - 3)dv = dt

 \implies  -  \frac{1}{3}  \int\frac{ 3{v}^{2}  + 18v - 3}{ {v}^{3} + 9 {v}^{2}   - 3v + 1} dv =   \int\frac{dx}{x}  \\

 \implies  -  \frac{1}{3}  \int\frac{ dt}{t}  =   \int\frac{dx}{x}  \\

 \implies  - \frac{1}{3}  ln(t)  =  ln(x)  + c \\

 \implies  - \frac{1}{3}  ln( {v}^{3} + 9 {v}^{2} - 3v  + 1 )  =  ln(x)  + c \\

 \implies  - \frac{1}{3}  ln( {( \frac{y}{x} )}^{3} + 9 {( \frac{y}{x}) }^{2} - 3( \frac{y}{x}  ) + 1 )  =  ln(x)  + c \\

 \implies  - \frac{1}{3}  ln( { y }^{3} + 9 x{y }^{2} - 3 {x}^{2} y  + {x}^{3}  ) +  ln(x)   =  ln(x)  + c \\

 \implies  - \frac{1}{3}  ln( { y }^{3} + 9 x{y }^{2} - 3 {x}^{2} y  + {x}^{3}  )  =    c \\

 \implies    ln( { y }^{3} + 9 x{y }^{2} - 3 {x}^{2} y  + {x}^{3}  )  =   - 3 c \\

 \implies     { y }^{3} + 9 x{y }^{2} - 3 {x}^{2} y  + {x}^{3}   =     {e}^ {- 3 c} \\

 \implies     { y }^{3} + 9 x{y }^{2} - 3 {x}^{2} y  + {x}^{3}   =     k \\

Similar questions