Math, asked by bhavyaraval32, 2 months ago

x/2+3/2=2x/5-1 solve the following linear equations​

Answers

Answered by EuphoricBunny
69

Answer:

x = -25

_________________________

Step-by-step explanation:

\\   \large \bf \dfrac{x}{2}  +  \dfrac{3}{2}  =  \dfrac{2x}{5 }  -1\\   \\  \implies \bf \:  \frac{x}{2}  -  \frac{2x}{5}  =  - 1 - (  \frac{3}{2} )\\  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dag (LCM   \: \: of \:  \:  5   \: \: and \:   \: 2  \: \:  is  \: \:  10)\\ \\   \implies  \bf \frac{5x - 4x  }{10}  =  \frac{ (- 2 - 3)}{2}  \\   \\  \implies \bf \frac{x}{10}  =  \frac{ - 5}{ \: 2}  \\  \\  \bf \implies \: x =  (\frac{ - 5}{ \: 2} ) \times 10 \\  \\  \bf \implies \: x =  \frac{ - 50}{ \: 2}  \\  \\ \bf \implies \: x =  - 25 \\  \\    {\underline{ \boxed{   \sf\therefore \: the \:  \: vaue \:  \: of \:  \: x \:  \:  =  \:  \:  - 25 \: }}}

.

Now let's verify !

Substitute value of x = -25 in the given equation.

 \large \bf \dfrac{x}{2}  +  \dfrac{3}{2}  =  \dfrac{2x}{5 }   - 1\\ \\  \bf \implies \dfrac{ - 25}{2}  +  \dfrac{3}{2} =  \dfrac{2( - 25)}{5 } - 1 \\  \\ \bf \implies   \dfrac{ - 25}{2}  +  \dfrac{3}{2} =  \dfrac{ - 50}{5 }  - 1\\  \\ \bf \implies \dfrac{ - 25 + 3}{2}   =  \dfrac{ - 50}{5}  - 1 \\  \\ \bf \implies \frac{  - 22}{2}  =  \frac{ \cancel{ - 50} {}^{10} }{ \cancel{5} {}^{1} }  \\ \\ \bf \implies - 11 =  - 11  \\   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{\boxed{ \rm LHS = RHS }}\\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: Hence, verified\\   \\ \sf \therefore \:The \:  \: value \:  \: of \:  \: x \:  =  - 25

Similar questions
Math, 9 months ago