Math, asked by jeenasharma234, 6 months ago

x=2 +√3 and x+y =4 ,then find the simplest value of xy+(1/xy)​

Answers

Answered by CloseEncounter
12

Question:

x=2 +√3 and x+y =4 ,then find the simplest value of xy+(1/xy)

Solution:

x=2 +√3 ⁣        ⁣   (1)          

x+y=4⁣           ⁣     (Given)

y=4-x

y=4-(2+√2)

y=4-2-√2

y=2-√2

therefore,

  • x=2 +√3 and y=2-√2

putting the value of x and y in the equation xy+(1/xy)

⁣           

⁣           {\boxed{\sf{\red{(a+b)(a-b)=a²-b²}}}}

⁣          

\bold{(2 +√3)(2-√2)+{\dfrac{1}{(2 +√3)(2-√2)}}}

=⁣    \bold{2²-(√2)²+{\dfrac{1}{2²-(√2)²}}}

=⁣        \bold{4-2+{\dfrac{1}{4-2}}}

=⁣         \bold{2+{\dfrac{1}{2}}}

=⁣         \bold{{\dfrac{4+1}{2}}}

⁣ =         \bold{{\dfrac{5}{2}}}

╚════════════════════════╝

For More Information

(a+b)²=a² + b² + 2ab

(a-b)²=a² + b² -2ab

(a+b)(a-b)= a²-b²

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca.

Answered by darksoul3
5

Solution:

x=2 +√3 ⁣        ⁣   (1)          

x+y=4⁣           ⁣     (Given)

y=4-x

y=4-(2+√2)

y=4-2-√2

y=2-√2

therefore,

x=2 +√3 and y=2-√2

putting the value of x and y in the equation xy+(1/xy)

⁣           

refer the attachment file

Attachments:
Similar questions