Math, asked by godop123410, 2 months ago

X=2-√3 Find 1/X and X3+1/x3​

Answers

Answered by hfhviyfd
1

Answer:

 \frac{1}{x}  =  \frac{1}{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  =  \frac{2 +  \sqrt{3} }{4 - 3} = 2 +  \sqrt{3}   \\ then \:  \frac{1}{x}   = 2 +  \sqrt{3}   \\ then \: x +  \frac{1}{x} = 2 -  \sqrt{3}  + 2 +  \sqrt{3} =  {2}^{2} -  \sqrt{ {3}^{2} }   = 4 - 3 = 1 \\ then \: x +  \frac{1}{x}  = 1  \\ then \:  {x}^{3}  +  \frac{ 1}{ {x}^{3} }  \\ atq \\( 2  -  { \sqrt{3} })^{3}   +(  \frac{1}{2  -   {3}^{3} } ) =  {1}^{3}

x + 1/x cube is 1

Mark me brainliest

Similar questions