Math, asked by malfoydraco651, 10 months ago

x = 2 + √3 ,find the value of x 2 + 1 x 2 .

Answers

Answered by ItzAditt007
2

{\huge{\pink{\underline{\underline{\purple{\mathbb{\bold{\mathcal{AnSwEr..}}}}}}}}}

{\large{\blue{\bold{\underline{Given:-}}}}}

\implies \: x = 2 +  \sqrt{ 3 }

{\large{\blue{\bold{\underline{To\:Find:-}}}}}

▪︎ The value of,

\implies \: x {}^{2} + 1x + 2

{\large{\blue{\bold{\underline{ID\:Used:-}}}}}

▪︎ (a+b)² = a²+b²+2ab.

{\large{\blue{\bold{\underline{Now,}}}}}

▪︎ By putting the value of x we get,

\implies \: (2 +  \sqrt{ 3 }) {}^{2} + 1(2 +  \sqrt{3}) + 2 \\  \\  = (2) {}^{2} + ( \sqrt{3}) {}^{2} + 2(2)( \sqrt{3}) + 2 +  \sqrt{3} + 2  \\  \\  = 4 + 3 + 4 \sqrt{3} + 2 +  \sqrt{3}  + 2 \\  \\  = 11 + 4 \sqrt{3}  +  \sqrt{3} \\  \\  = 11 + 5 \sqrt{3} .

Therefore your answer is 11 + 5 \sqrt{3} .

Answered by Anonymous
0

\huge\bold\red{Answer:-}

{\underline{\underline{\mathsf{\pink{Given:-}}}}}

x = 2 + \sqrt{3}

{\underline{\underline{\mathsf{\pink{To \ find:-}}}}}

x^2 + 1x + 2

{\underline{\underline{\mathsf{\pink{Identity:-}}}}}

(a+b)^2 = a^2 + b^2 + 2ab

{\underline{\underline{\mathsf{\blue{Solution:-}}}}}

★ x² + 1x + 2

→ (2 + √3)² + (2+√3) + 2

→ ((2)² + (√3)² + 2×2×√3)) + (2+√3) + 2

→ (7+ 4√3) + 2+√3 + 2

→ 11 + 5√3

{\underline{\underline{\mathsf{\red{Here, \ the \ required</p><p>\ answer \ is:-}}}}} 11 + \sqrt{3}

____________________________

Similar questions