x= 2+✓3 find (x^3+1/x^3)
Answers
Answer:
Answer:
x³ + 1/x³ = 52
Note:
★ (a + b)² = a² + 2ab + b²
★ (a - b)² = a² - 2ab + b²
★ a² - b² = (a + b)(a - b)
★ (a + b)³ = a³ + b³ + 3ab(a + b)
★ (a - b)³ = a³ - b³ - 3ab(a - b)
★ a³ + b³ = (a + b)(a² - ab + b²)
Solution:
Given : x = 2 + √3
To find : x³ + 1/x³
We have ;
x = 2 + √3
Thus,
1/x = 1/(2 + √3)
Now,
Rationalising the denominator of the term in RHS , we get ;
=> 1/x = (2 - √3)/(2 + √3)(2 - √3)
=> 1/x = (2 - √3)/[ 2² - (√3)² ]
=> 1/x = (2 - √3)/(4 - 3)
=> 1/x = (2 - √3)/1
=> 1/x = 2 - √3
Now,
=> x + 1/x = 2 + √3 + 2 - √3
=> x + 1/x = 4
Cubing both the sides , we have ;
=> (x + 1/x)³ = 4³
=> x³ + 1/x³ + 3•x•(1/x)•(x + 1/x) = 64
=> x³ + 1/x³ + 3(x + 1/x) = 64
=> x³ + 1/x³ + 3•4 = 64 { ° . ° x + 1/x = 4 }
=> x³ + 1/x³ + 12 = 64
=> x³ + 1/x³ = 64 - 12
=> x³ + 1/x³ = 52
Hence,
The required answer is 52 .