x=2+√3, find x^4+1/x^4
Answers
EXPLANATION.
⇒ x = 2 + √3.
As we know that,
We can write equation as,
⇒ 1/x = 1/(2 + √3).
Rationalizes the denominator in the equation, we get.
⇒ 1/x = 1/(2 + √3) x (2 - √3)/(2 - √3).
⇒ 1/x = (2 - √3)/[(2 + √3)(2 - √3)].
⇒ 1/x = (2 - √3)/[(2)² - (√3)²].
⇒ 1/x = (2 - √3)/[4 - 3].
⇒ 1/x = (2 - √3).
We can write equation as,
⇒ x + 1/x = [(2 + √3) + (2 - √3)].
⇒ x + 1/x = 2 + √3 + 2 - √3.
⇒ x + 1/x = 4.
Squaring on both sides of the equation, we get.
⇒ (x + 1/x)² = (4)².
As we know that,
Formula of :
⇒ (a + b)² = a² + b² + 2ab.
Using this formula in the equation, we get.
⇒ (x)² + (1/x)² + 2(x)(1/x) = (4)².
⇒ x² + 1/x² + 2 = 16.
⇒ x² + 1/x² = 16 - 2.
⇒ x² + 1/x² = 14.
Again Squaring on both sides of the equation, we get.
⇒ [(x² + 1/x²)]² = (14)².
⇒ (x²)² + (1/x²)² + 2(x²)(1/x²) = (14)².
⇒ x⁴ + 1/x⁴ + 2 = 196.
⇒ x⁴ + 1/x⁴ = 196 - 2.
⇒ x⁴ + 1/x⁴ = 194.