Math, asked by Chilledmilk, 6 months ago

x = 2 + √3 find x² + 1/x^2​

Answers

Answered by cbhagyanarayanareddy
0

Answer:

hope it's helpful ....

,

Attachments:
Answered by AkhilGomasa
0

Answer:

14

Explanation:

This is the way to find the value of x² + 1/x²,

substitute the given x = 2 + √3 into the variable x.

.x² + 1/x²

.x² + 1/x²= (2 + √3)² + 1/(2 + √3)²

.x² + 1/x²= (2 + √3)² + 1/(2 + √3)²= [2² + 2(2)(√3) + (√3)²] + 1/[2² + 2(2)(√3) + (√3)²]

.x² + 1/x²= (2 + √3)² + 1/(2 + √3)²= [2² + 2(2)(√3) + (√3)²] + 1/[2² + 2(2)(√3) + (√3)²]= (4 + 4√3 + 3) + 1/(4 + 4√3 + 3)

.x² + 1/x²= (2 + √3)² + 1/(2 + √3)²= [2² + 2(2)(√3) + (√3)²] + 1/[2² + 2(2)(√3) + (√3)²]= (4 + 4√3 + 3) + 1/(4 + 4√3 + 3)= (7 + 4√3) + 1/(7 + 4√3)

.x² + 1/x²= (2 + √3)² + 1/(2 + √3)²= [2² + 2(2)(√3) + (√3)²] + 1/[2² + 2(2)(√3) + (√3)²]= (4 + 4√3 + 3) + 1/(4 + 4√3 + 3)= (7 + 4√3) + 1/(7 + 4√3)= (7 + 4√3)²/(7 + 4√3) + 1/(7 + 4√3)

.x² + 1/x²= (2 + √3)² + 1/(2 + √3)²= [2² + 2(2)(√3) + (√3)²] + 1/[2² + 2(2)(√3) + (√3)²]= (4 + 4√3 + 3) + 1/(4 + 4√3 + 3)= (7 + 4√3) + 1/(7 + 4√3)= (7 + 4√3)²/(7 + 4√3) + 1/(7 + 4√3)= ((7 + 4√3)² + 1)/(7 + 4√3)

.x² + 1/x²= (2 + √3)² + 1/(2 + √3)²= [2² + 2(2)(√3) + (√3)²] + 1/[2² + 2(2)(√3) + (√3)²]= (4 + 4√3 + 3) + 1/(4 + 4√3 + 3)= (7 + 4√3) + 1/(7 + 4√3)= (7 + 4√3)²/(7 + 4√3) + 1/(7 + 4√3)= ((7 + 4√3)² + 1)/(7 + 4√3)= (7² + 2(7)(4√3) + (4√3)² + 1)/(7 + 4√3)

.x² + 1/x²= (2 + √3)² + 1/(2 + √3)²= [2² + 2(2)(√3) + (√3)²] + 1/[2² + 2(2)(√3) + (√3)²]= (4 + 4√3 + 3) + 1/(4 + 4√3 + 3)= (7 + 4√3) + 1/(7 + 4√3)= (7 + 4√3)²/(7 + 4√3) + 1/(7 + 4√3)= ((7 + 4√3)² + 1)/(7 + 4√3)= (7² + 2(7)(4√3) + (4√3)² + 1)/(7 + 4√3)= (49 + 56√3 + 48 + 1)/(7 + 4√3)

.x² + 1/x²= (2 + √3)² + 1/(2 + √3)²= [2² + 2(2)(√3) + (√3)²] + 1/[2² + 2(2)(√3) + (√3)²]= (4 + 4√3 + 3) + 1/(4 + 4√3 + 3)= (7 + 4√3) + 1/(7 + 4√3)= (7 + 4√3)²/(7 + 4√3) + 1/(7 + 4√3)= ((7 + 4√3)² + 1)/(7 + 4√3)= (7² + 2(7)(4√3) + (4√3)² + 1)/(7 + 4√3)= (49 + 56√3 + 48 + 1)/(7 + 4√3)= (98 + 56√3)/(7 + 4√3)

.x² + 1/x²= (2 + √3)² + 1/(2 + √3)²= [2² + 2(2)(√3) + (√3)²] + 1/[2² + 2(2)(√3) + (√3)²]= (4 + 4√3 + 3) + 1/(4 + 4√3 + 3)= (7 + 4√3) + 1/(7 + 4√3)= (7 + 4√3)²/(7 + 4√3) + 1/(7 + 4√3)= ((7 + 4√3)² + 1)/(7 + 4√3)= (7² + 2(7)(4√3) + (4√3)² + 1)/(7 + 4√3)= (49 + 56√3 + 48 + 1)/(7 + 4√3)= (98 + 56√3)/(7 + 4√3)= 14(7 + 4√3)/(7 + 4√3)

.x² + 1/x²= (2 + √3)² + 1/(2 + √3)²= [2² + 2(2)(√3) + (√3)²] + 1/[2² + 2(2)(√3) + (√3)²]= (4 + 4√3 + 3) + 1/(4 + 4√3 + 3)= (7 + 4√3) + 1/(7 + 4√3)= (7 + 4√3)²/(7 + 4√3) + 1/(7 + 4√3)= ((7 + 4√3)² + 1)/(7 + 4√3)= (7² + 2(7)(4√3) + (4√3)² + 1)/(7 + 4√3)= (49 + 56√3 + 48 + 1)/(7 + 4√3)= (98 + 56√3)/(7 + 4√3)= 14(7 + 4√3)/(7 + 4√3)= 14

Similar questions