Math, asked by prabathirumoorthy, 11 months ago

x^2+3x-18 split the middle term​

Answers

Answered by Sharad001
50

Question :-

Split the middle term of-

 \to \rm {x}^{2}  + 3x - 18 = 0

Answer :-

 \to  \:  \: \boxed{  \rm \: x =  - 6 \:  \:  \:  \: or  \:  \:  \: \:  3}

Solution :-

We have ,

 \to \rm \:   {x}^{2}  + 3x - 18 = 0 \\  \\  \bf \rm split \: the \: middle \: term \\  \\  \to \rm \:  {x}^{2}  + (6 - 3)x - 18 = 0 \\  \\  \to \rm \:  {x}^{2}  + 6x - 3x - 18 = 0 \\  \\  \to \rm \:  x(x + 6) - 3(x + 6) = 0 \\  \\  \to \rm \:  \: (x + 6)(x - 3) = 0 \\  \\ \:  \star \bf \:  case \: (1) \: if \:  \\  \to \rm \: x + 6 = 0 \\  \: \\  \to \boxed{ \rm  \:  x =  - 6} \\  \\  \star \:  \bf \: case \: (2) \: if \:  \\  \to \rm \: x - 3 = 0 \\  \\  \to \boxed{ \rm \:  x = 3} \\  \\  \sf \: hence \rm \: x =  3 \: or \:  - 6 \\  \\ \underline{ \underline{  \sf \red{ \sf \: \boxed{  \sf \: verification \: }}}} :  -  \\  \\ \rm \: firstly \:  put \: x =  - 6 \\  \\  \to \rm {( - 6)}^{2}  + 3 \times ( - 6)  - 18 = 0 \\  \\  \to \: 36 - 18 - 18 = 0 \\  \\  \to \: 0 = 0 \\  \\  \rm \: now \: put \: x = 3 \\  \\  \to \rm {(3)}^{2}  + 3 \times 3 - 18 = 0 \\  \\  \to \: 9 + 9 - 18 = 0 \\  \\  \to \: 0 = 0 \\  \\  \red{\bf hence \: verified}

Similar questions