(x^2-3x)^2+3(x^2-3x)+2=0
Answers
Answer:
The roots of the given quadratic equation are x = 2 or x = 1.
Step-by-step-explanation:
We have given a quadratic equation.
We have to find the roots of the quadratic equation.
The given quadratic equation is ( x² - 3x )² + 3 ( x² - 3x ) + 2 = 0.
Now,
( x² - 3x )² + 3 ( x² - 3x ) + 2 = 0
⇒ ( x² - 3x )² + 2 ( x² - 3x ) + ( x² - 3x ) + 2 = 0
⇒ ( x² - 3x ) [ ( x² - 3x ) + 2 ] + 1 [ ( x² - 3x ) + 2 ] = 0
⇒ [ ( x² - 3x ) + 2 ] ( x² - 3x + 1 ) = 0
⇒ ( x² - 3x + 2 ) = 0 OR ( x² - 3x + 1 ) = 0
⇒ x² - 3x + 2 = 0 OR x² - 3x + 1 = 0
⇒ x² - 2x - x + 2 = 0 OR x² - 2x - x + 1 = 0
⇒ x ( x - 2 ) - 1 ( x - 2 ) = 0 OR x ( x - 2 ) - 1 ( x - 1 ) = 0
⇒ ( x - 2 ) ( x - 1 ) = 0 OR ( x - 1 ) ( x - 1 ) ( x - 2 ) = 0
⇒ ( x - 2 ) ( x - 1 ) = 0 OR ( x - 2 ) ( x - 1 ) = 0
⇒ ( x - 2 ) = 0 OR ( x - 1 ) = 0
⇒ x - 2 = 0 OR x - 1 = 0
⇒ x = 2 OR x = 1
∴ The roots of the given quadratic equation are x = 2 or x = 1.