Math, asked by tomanverma1972, 10 months ago

x^2 - 3x + 2


factories and tell the 2 zeroes

I will mark the best answer​

Answers

Answered by ShírIey
61

AnswEr:

Zeroes of the Given Equation are 1 & 2

\rule{150}2

\longrightarrow\sf\; x^2 - 3x + 2

\:\:\:\:\;\:\dag\footnotesize\bold{\underline{\underline{\sf{\purple{Factorising\:by\: Middle\;Term\; splitting\: Method}}}}}

\implies\sf\; x^2 - 3x + 2 = 0

\implies\sf\; x^2 - 2x - x + 2 = 0

\implies\sf\;  x(x - 2) -1(x - 2) = 0

\implies\sf\red{(x\:-\;2) (x \:-\:1)}  = 0

Now, Factorising the zeroes with zero:

\implies\sf\; x - 2 = 0

\implies\sf\bold\pink{x\:=\;2}

And,

\implies\sf\; x - 1 = 0

\implies\sf\bold\pink{x\:=\;1}

\dag\:\:\small\bold{\underline{\sf{\blue{Hence,\: Zeroes\;of\:the\:Given\: Equation\;are\; 1 \:\&\;2.}}}}

\rule{150}2

Answered by Anonymous
5

Correct Question-:

  • Factorise and zero of expression-:
  • 1) x² - 3 x + 2

AnswEr -:

  • \boxed{\sf{\purple {\: The  \: zeroes\: of\:given\: equation \:are \: 1\: and\: 2 . }}}
  • \boxed{\sf{\purple {Factor\: of \: x²+3x-2\: are \: (x-1)\: and\: (x-2) . }}}

Explanation-:

Given ,

Expression -:

  • x² - 3x + 2

To Find ,

  • Factorise and zero of expression.

Solution-:

\boxed{\sf{\purple {Factorisation\: Using \: Middle\: term \: splitting \: method . }}}

\pink{\sf{\rightarrow {x² + 3x + 2 = 0}}}

\pink{\sf{\rightarrow {x²  - 2x - x + 2= 0 }}}

\pink{\sf{\rightarrow {x(x -2) -1 (x -2) = 0 }}}

\blue{\sf{\rightarrow {(x-1)(x-2)=0 }}}

Therefore,

  • \boxed{\sf{\purple {Factor\: of \: x²+3x-2\: are \: (x-1)\: and\: (x-2) . }}}

☆ Factorising the expression zeroes with zero are -:

\pink{\sf{\rightarrow {x-1 = 0}}}

\blue{\sf{\rightarrow {x= 1}}}

And ,

\pink{\sf{\rightarrow {x-2 = 0}}}

\blue{\sf{\rightarrow {x=2}}}

\boxed{\sf{\purple {Therefore,\: The  \: zeroes\: of\:given\: equation \:are \: 1\: and\: 2 . }}}

☆ The answers are -:

  • \boxed{\sf{\purple {Therefore,\: The  \: zeroes\: of\:given\: equation \:are \: 1\: and\: 2 . }}}
  • \boxed{\sf{\purple {Factor\: of \: x²+3x-2\: are \: (x-1)\: and\: (x-2) . }}}

_______________♡_________________

Similar questions