Math, asked by IMrGauravI, 8 months ago

x^{2}+3x-28

Answer it​

Answers

Answered by MrChauhan96
14

\bf\purple{\underline{\boxed{Question}}}

\small\rm{x^{2}+3x-28}

\bf\purple{\underline{\boxed{Solution}}}

\small\rm{Given\: Polynomial}

\bold{\small}\sf{x^{2}+3x-28}

\bold{\small}\tt{Let's\: factorise\: this\: equation}

\bold{\small}\tt{We\:will\:get,}

\bold{\small}\mathcal{x^{2}-7x+4x-28=0}

\bold{\small}\mathcal{x(x-7)+4(x-7)}

\bold{\small}\mathcal{(x-7)\:(x+4)=0}

\bold{\small}\tt{Therefore,}

\huge\mathcal{x={7,}{-4}}

\bold{\small}\tt{The \:zeroes\:of\:f(x)\:are\:7\:and\: -4.}

\bold{\small}\tt{Now\:for\:finding\:the\:zeroes\:of \:the\: } \tt{polynomial.}

\bold{\small}\tt{We\: use,}

\bold{\small}\tt{ \boxed{Sum\:of\:the\:zeroes=\alpha+	\beta}}

\tt{7+(-4)=3}

\bold{\small}\tt{ \boxed{Product\:of\:the\:zeroes=α \times β}}

\tt{7\times(-4)=-28}

\bf\purple{\underline{\boxed{Thanks}}}

Answered by BaroodJatti12
3

\sf\blue{An}\sf\orange{s}\sf\red{w}\sf\green{er :-}

Use the sum-product pattern

2+3−28

x2+3x−28

x2+7x−4x−28

Common factor from the two pairs

x2+7x−4x−28

x(x+7)−4(x+7)

Rewrite in factored form

x(x+7)−4(x+7)

solution:-

(−4)(+7)

Similar questions