Math, asked by sp4890089, 10 months ago

x^2+4√2x+5 solve it​

Answers

Answered by Anonymous
7

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

x² + 4√2x + 5 = 0, solve it.

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

By Dhracharya Formula

\boxed{\sf{\red{\:x\:=\:\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}}}}

where,

  • a = 1
  • b = 4√2
  • c = 5

Keep all values,

\mapsto\sf{\:x\:=\:\dfrac{-4\sqrt{2}\pm\sqrt{(4\sqrt{2})^2-4.1.5}}{2.1}} \\ \\ \\ \mapsto\sf{\:x\:=\:\dfrac{-4\sqrt{2}\pm\sqrt{(4\sqrt{2})\times (4\sqrt{2})-20}}{2}} \\ \\ \\ \mapsto\sf{\:x\:=\:\dfrac{-4\sqrt{2}\pm\sqrt{32-20}}{2}} \\ \\ \\ \mapsto\sf{\:x\:=\:\dfrac{-4\sqrt{2}\pm\sqrt{12}}{2}} \\ \\ \\ \mapsto\sf{\:x\:=\:\dfrac{-4\sqrt{2}\pm 2\sqrt{3}}{2}}

First, take (+ ve) sign.

\mapsto\sf{\:x\:=\:\dfrac{-4\sqrt{2}+2\sqrt{3}}{2}} \\ \\ \\ \mapsto\sf{\:x\:=\:\dfrac{2(-2\sqrt{2}+\sqrt{3})}{2}} \\ \\ \\ \mapsto\sf{\orange{\:x\:=\:(-2\sqrt{2}+\sqrt{3})}}

Second, take ( - ve) sign.

\mapsto\sf{\:x\:=\:\dfrac{-4\sqrt{2}-2\sqrt{3}}{2}} \\ \\ \\ \mapsto\sf{\:x\:=\:\dfrac{2(-2\sqrt{2}-\sqrt{3})}{2}} \\ \\ \\ \mapsto\sf{\orange{\:x\:=\:(-2\sqrt{2}-\sqrt{3})}}

\Large{\underline{\mathfrak{\bf{Hence}}}}

\mapsto\sf{\:value\:of\:x\:=\:(-2\sqrt{2}-\sqrt{3})\:\:and\:\:(-2\sqrt{2}+\sqrt{3})}

Similar questions