Math, asked by jyotiporwaludr, 1 year ago

X^2+4x-(a^2+2a-3)=0
solve then quadratic equation by factorisation method.

Answers

Answered by pulakmath007
25

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO SOLVE

Using factorisation method

 \sf{  {x}^{2} + 4x - ( {a}^{2} + 2a - 3)  \: } = 0

EVALUATION

 \sf{  {x}^{2} + 4x - ( {a}^{2} + 2a - 3)  \: } = 0

 \implies \sf{  {x}^{2} + 4x - ( {a}^{2} + 3a  - a- 3)  \: } = 0

 \implies \sf{  {x}^{2} + 4x -  \bigg [ {a}(a  + 3)  - 1(a + 3) \bigg]   \: } = 0

 \implies \sf{  {x}^{2} + 4x -   (a  + 3)  (a  - 1)   \: } = 0

 \implies \sf{  {x}^{2} + \bigg[ (a + 3) - (a - 1) \bigg] x -   (a  + 3)  (a  - 1)   \: } = 0

 \implies \sf{  {x}^{2} + (a + 3) x- (a - 1)  x -   (a  + 3)  (a  - 1)   \: } = 0

 \implies \sf{  {x}(x+ a + 3) - (a - 1)  (x    + a  + 3)     \: } = 0

 \implies \sf{  (x+ a + 3)  (x - a  + 1)\: } = 0

Since the product of two real numbers are zero then either of them are zero

 \implies \sf{  (x+ a + 3) = 0 \:  \:  \: or \:  \:  \:   (x - a  + 1)\: } = 0

Now

 \sf{  (x+ a + 3) = 0 \:} \:  \:  \: gives

 \sf{  x =  - ( a + 3) \:} \:  \:  \:

Again

 \sf{  (x -  a + 1) = 0 \:} \:  \:  \: gives

 \sf{  x =  a  - 1 \:} \:  \:  \:

Hence the required solution is

 \sf{x = - (a+3 ) \:  \: ,  \:  \: (a-1)}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Let A={1,2,0,-1} B={1,3-1,-3} and

function f = A to B f(x) =px+q

If f={ (1,1),(2,3),(0,-1),(-1,-3)} find the value of p

https://brainly.in/question/21617889

Similar questions