Math, asked by paritosh817, 1 month ago

x^2=5+2√6
Find the value of x​

Answers

Answered by jaswasri2006
1

x² = 5+2√6

then ,

x = √(5+2√6) = √5 + 6√2

⇒ Value of x is √5 + 6√2

Answered by mathdude500
2

\large\underline{\sf{Given- }}

\rm :\longmapsto\: {x}^{2} = 5 + 2 \sqrt{6}

\large\underline{\sf{To\:Find - }}

The value of x.

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: {x}^{2} = 5 + 2 \sqrt{6}

can be rewritten as

\rm :\longmapsto\: {x}^{2} = 3 + 2 + 2 \sqrt{6}

can be again rewritten as

\rm :\longmapsto\: {x}^{2} =  {( \sqrt{3} )}^{2}  +  {( \sqrt{2} )}^{2}  + 2 \sqrt{3 \times 2}

can be rewritten as

\rm :\longmapsto\: {x}^{2} =  {( \sqrt{3} )}^{2}  +  {( \sqrt{2} )}^{2}  + 2 \sqrt{3}  \sqrt{2}

We know,

\boxed{ \rm \:  {x}^{2} +  {y}^{2}  + 2xy =  {(x + y)}^{2} }

So, using this identity, we get

\rm :\longmapsto\: {x}^{2} =  {( \:  \sqrt{3}  +  \sqrt{2} \: ) }^{2}

\bf\implies \:x \:  =  \:  \pm \: ( \:  \sqrt{3}  +  \sqrt{2}  \: )

Additional Information :-

Let's solve the same type of problem!!!

Question :-

\rm :\longmapsto\:If \:  {x}^{2}  = 3 - 2 \sqrt{2}, \: find \: the \: value \: of \: x

Answer :-

Given that

\rm :\longmapsto\: {x}^{2} = 3 - 2 \sqrt{2}

\rm :\longmapsto\: {x}^{2} = 2 + 1 - 2 \sqrt{2}

\rm :\longmapsto\: {x}^{2} =  {( \sqrt{2} )}^{2}  +  {(1)}^{2}  - 2 \sqrt{2 \times 1}

\rm :\longmapsto\: {x}^{2} =  {( \sqrt{2} )}^{2}  +  {(1)}^{2}  - 2 \sqrt{2}  \times 1

We know,

\boxed{ \rm \:  {x}^{2} +  {y}^{2} - 2xy =  {(x  -  y)}^{2} }

So, using this identity, we get

\rm :\longmapsto\: {x}^{2} =  {( \sqrt{2}  - 1)}^{2}

\bf\implies \:x \:  =  \:  \pm \: ( \:  \sqrt{2}   - 1 \: )

Similar questions