Math, asked by gauri16in, 9 months ago

x=2-√5 find x^2 + 1/x^2​

Answers

Answered by Rohan0590
1

Question:

If x=2- \sqrt{5} find x^{2} +\dfrac{1}{x^{2} }.

To find:

\bigstar To find the value of x^{2} +\dfrac{1}{x^{2} }.

Answer:

The value of \bold{\underline{\:x^{2} +\dfrac{1}{x^{2} }\:is\:18\:}}

Given:

\bigstar \: x=2-\sqrt{5}

Step-by-step explanation:

\hookrightarrow \: x=2-\sqrt{5}

\hookrightarrow \dfrac{1}{x} =\dfrac{1}{2-\sqrt{5} }

Here Rationalizing the denominator,

\hookrightarrow \dfrac{1}{x} =\dfrac{2+\sqrt{5} }{(2-\sqrt{5})(2+\sqrt{5})  }

It's of the form, \underline{a^{2} -b^{2} =(a+b)(a-b)}

\hookrightarrow \dfrac{1}{x} =\dfrac{2+\sqrt{5} }{(2)^{2} -(\sqrt{5}) ^{2} }

\hookrightarrow \dfrac{1}{x} =\dfrac{2+\sqrt{5}  }{4-5}

\hookrightarrow\boxed{ \dfrac{1}{x} =2+\sqrt{5} }

Now, find the value of x^{2} +\dfrac{1}{x^{2} }

Here Substituting the value of x and \dfrac{1}{x} ,

\implies (2-\sqrt{5} )^{2} +(2+\sqrt{5} )^{2}

It's of the form (a+b)^{2} and (a-b)^{2}

\implies \big[ (2)^{2} -2 \times 2 \times \sqrt{5} +(\sqrt{5} )^{2}\big] +\big[ (2)^{2} +2 \times 2 \times \sqrt{5} +(\sqrt{5} )^{2}\big]

\implies \big[4-4\sqrt{5} +5\big]+\big[4+4\sqrt{5} +5\big]

\implies 9 -\underline{\:4 \sqrt{5}\:} +9+\underline{\:4\sqrt{5} \:}

\implies \boxed{x^{2} +\dfrac{1}{x^{2} }=18}

\therefore The value of \bold{\underline{\:x^{2} +\dfrac{1}{x^{2} }\:is\:18\:}}.

Similar questions