[x]^2-5 [x] +6=0 .find x if [ ] represent greatest integer function
Answers
Answered by
19
given
quadratic eqn
[X]²-5[X] +6= 0
[X]²-3[X] -2[X] +6 =0
[X]( [X]-3)-2([X]-3) =0
([X] -2) ([X]-3 ) = 0
[X] = 2 .
thus X € [2,3)
[X]= 3
x€ [3,4)
so overall values of X
€ [2,3)U[3,4)
x € [2,4)
quadratic eqn
[X]²-5[X] +6= 0
[X]²-3[X] -2[X] +6 =0
[X]( [X]-3)-2([X]-3) =0
([X] -2) ([X]-3 ) = 0
[X] = 2 .
thus X € [2,3)
[X]= 3
x€ [3,4)
so overall values of X
€ [2,3)U[3,4)
x € [2,4)
Answered by
7
it is given that [x]² - 5[x] + 6 = 0 where [ . ] represent greatest integer function.
we have to find the value of x.
[x]² - 5[x] + 6 = 0
⇒ [x]² - 2[x] - 3[x] + 6 = 0
⇒[x]([x] - 2) - 3([x] - 2) = 0
⇒([x] - 3)([x] - 2) = 0
⇒[x] = 3, 2
we know, when [x] = n ⇒n - 1 < x ≤ n
so, [x] = 2 ⇒2 - 1 < x ≤ 2 ⇒1 < x ≤ 2
[x] = 3 ⇒3 - 1 < x ≤ 3 ⇒2 < x ≤ 3
hence x ∈ [2, 1) U [3, 2)
Similar questions
Computer Science,
8 months ago
Chemistry,
1 year ago
Math,
1 year ago
Math,
1 year ago
English,
1 year ago