Math, asked by dv503648, 7 months ago

x^2+6x-4=0quadratic equation​

Answers

Answered by ksashwinkumar81
1

Step-by-step explanation:

the answer is in the attachment to

Attachments:
Answered by Anonymous
3

SOLUTION :

 \star \:  \:  \sf{\underline{Given : }}

 \sf {x}^{2}  + 6x - 4 = 0

Process 1

 \sf {x}^{2}  + 6x - 4 = 0

 \sf \implies {x}^{2}  +6x + 9- 9 - 4 = 0

 \sf \implies  {(x + 3)}^{2}  - 13 = 0

 \sf \implies  {(x + 3)}^{2}  -   { \sqrt{13} }^{2}  = 0

 \sf \implies \: (x + 3 +  \sqrt{13} )(x + 3 -  \sqrt{13} ) = 0

 \sf \implies { \boxed {\sf{ x =  - (3 +  \sqrt{13} ) \:  \:  \: or \:  \:  \: x =  (\sqrt{13}   -  3)}}}

Process 2

 \sf {x}^{2}  + 6x - 4 = 0

We know quadratic equation formula

 \sf \:  {x =  \frac{ - b  ± \sqrt{ {b}^{2} - 4ac } }{2a} } \\

Putting value,

 \implies \sf \: x =  \frac{ - 6±  \sqrt{ {6}^{2}  - 4 \times ( - 4) \times 1} }{2 \times 1}  \\

 \implies { \sf \: x =  - 3 +   \frac{ \sqrt{52} }{2}  \:  \:  \: or \:  \:  \: x =  - 3  -  \frac{ \sqrt{52} }{2} } \\

 \implies  \boxed{ \sf \: x =  - 3 +    \sqrt{13}  \:  \:  \: or \:  \:  \: x =  - 3  -   \sqrt{13} } \\

Similar questions