Math, asked by abhisharma744701385, 1 year ago

x^2+6x+6=0 solve using quadratic formula​

Answers

Answered by MarilynEvans
26

Answer:

 \mathfrak{\pink{The\:roots\:of\:the\:given\:equation\:are\:x = - 3 + \sqrt{3}\:and\:x = - 3 - \sqrt{3}}}

Step-by-step explanation:

x^2 + 6x + 6 = 0

Here, a = 1, b = 6 and c = 6

 \mathfrak{\purple{By\:using\:quadratic\:formula,}}

 x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

 x = \frac{-(6) \pm \sqrt{(6)^2 - 4(1)(6)}}{2(1)}

 x = \frac{-6 \pm \sqrt{36 - 24}}{2}

 x = \frac{-6 \pm \sqrt{12}}{2}

 x = \frac{-6 \pm \sqrt{4 \times 3}}{2}

 x = \frac{-6 \pm 2\sqrt{3}}{2}

 x = \frac{2(-3 \pm \sqrt{3})}{2}

 x = \frac{\cancel{2}(-3 \pm \sqrt{3})}{\cancel{2}}

 x = -3 \pm \sqrt{3}

 x = - 3 + \sqrt{3}\:or\:x = - 3 - \sqrt{3}

Therefore, the roots of the given equation are  x = - 3 + \sqrt{3}\:and\:x = - 3 - \sqrt{3}

Answered by ItSdHrUvSiNgH
9

Step-by-step explanation:

hello... \\  {x}^{2}  + 6x + 6 = 0 \\ a = 1 \\ b = 6 \\ c = 6 \\  \\ by \: quadratic \: formula =  >  \\  \\  \frac{ - b +  \: or \:  -  \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \frac{ - 6 +  \: or \:  -  \sqrt{36 - 24}  }{2(1)}  \\  \frac{ - 6 +  \: or \:  - 4 \sqrt{ 3} }{2}  \\  \frac{ - 3 +  \: or \:  - 2 \sqrt{3} }{1}  \\  \\  - 3 + 2 \sqrt{3}  \:  \:   \:  \:  \:  \:  \:  \: \:  \: or \:  \:  \:  \:  \:  - 3 - 2 \sqrt{3}  \\  \\ hope \: it \: helps \: uh..

Similar questions