Math, asked by VyshnavReddyPinreddy, 3 months ago

|x^2+6x+6 |= | x^2+4x+9 |+ | 2x - 3 |​ ,,,,, find the least positive integer satisfying the given equation ...

Answers

Answered by chrk9014
0

Answer:

2

Step-by-step explanation:

3&'bj,vbjhxnvccftdcvhbn

Answered by VaibhavSR
0

Answer: No such integer exists

Step-by-step explanation:

  • Given: |x^{2} +6x+6|=|x^{2} +4x+9|+|2x-3|
  • To find: The least positive integer which satisfies the given equation.
  • Concept: If any term comes out of modulus it becomes positive and the solving Quadratic equation.
  • Solution:

        According to question,

          |x^{2} +6x+6|=|x^{2} +4x+9|+|2x-3|

      ⇒x^{2} +6x+6=x^{2} +4x+9-2x+3

      ⇒4x=6

      ⇒x=\frac{3}{2}

Now again,

         |x^{2} +6x+6|=|x^{2} +4x+9|+|2x-3|

     ⇒x^{2} +6x+6=-x^{2} -4x-9+2x-3

     ⇒2x^{2} +8x+18=0

     ⇒x^{2} +4x+9=0

     ⇒x= −2+2.23607i and x= −2−2.23607i

Again,

      |x^{2} +6x+6|=|x^{2} +4x+9|+|2x-3|

  ⇒-x^{2} -6x-6=x^{2} +4x+9+2x-3

  ⇒2x^{2} +12x+12=0

  ⇒x^{2} +6x+6=0

  ⇒ x=−1.26795 and x=−4.73205

So, after looking at the solutions we can say that no such positive integer exists in this case.

  • Hence, there exists no positive integer which satisfies the given equation.

#SPJ3

Similar questions