Math, asked by davidabraqwe, 1 month ago

X^2-6x/(x-3)^3 resolve into partial fraction

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:\dfrac{ {x}^{2} - 6x}{ {(x - 3)}^{3} }

To resolve this in to partial fraction, Let assume that

\rm :\longmapsto\:\dfrac{ {x}^{2} - 6x}{ {(x - 3)}^{3} } = \dfrac{a}{(x - 3)}  + \dfrac{b}{ {(x - 3)}^{2} }  + \dfrac{c}{ {(x - 3)}^{3} }

On taking LCM, we get

\rm :\longmapsto\: {x}^{2} - 6x = a {(x - 3)}^{2} + b(x - 3) + c -  -  - (1)

On substituting x = 3 in equation (1), we get

\rm :\longmapsto\: {3}^{2} - 18 = c

\rm :\longmapsto\: 9 - 18 = c

\bf\implies \:c =  - 9

On substituting x = 0 in equation (1), we get

\rm :\longmapsto\: {0}^{2} -0 = a {(0 - 3)}^{2} + b(0 - 3) + c

\rm :\longmapsto\:0 = 9a - 3b + c

\rm :\longmapsto\:0 = 9a - 3b - 9

\rm :\longmapsto\:0 = 3a - b - 3

\bf\implies \:3a - b = 3 -  -  -  - (2)

On substituting x = 1, in equation (1), we get

\rm :\longmapsto\: {1}^{2} - 6= a {(1 - 3)}^{2} + b(1 - 3) + c

\rm :\longmapsto\:  - 5= 4a  - 2b - 9

\rm :\longmapsto\:9  - 5= 4a  - 2b

\rm :\longmapsto\:4a  - 2b = 4

\bf\implies \:a  - b = 2 -   -   - (3)

On Subtracting equation (3) from equation (2), we get

\rm :\longmapsto\:2a = 1

\bf\implies \:a = \dfrac{1}{2}

On substituting the value of a, in equation (3), we get

\rm :\longmapsto\:\dfrac{1}{2}  - b = 2

\rm :\longmapsto\:b = \dfrac{1}{2}  - 2

\rm :\longmapsto\:b = \dfrac{1 - 4}{2}

\bf\implies \:b \:  =  -  \: \dfrac{3}{2}

So, given expression can be resolved as

\rm :\longmapsto\:\dfrac{ {x}^{2} - 6x}{ {(x - 3)}^{3} } = \dfrac{1}{2(x - 3)} -  \dfrac{3}{ {2(x - 3)}^{2} } - \dfrac{9}{ {(x - 3)}^{3} }

Similar questions