Math, asked by anusha6369, 1 year ago

x ^ 2 + 8x + 2 = 0 Find the value of (1 / alpha + 1 / beta) with quadratic equation having two basic alpha and beta.​
plzz.. fast its urgent.

Answers

Answered by NehalAsif
2

Answer:

-4

Step-by-step explanation:

sum of roots=a+b=-b/a=-8

product of roots=ab=c/a=2   1/a+1/b=a+b/ab=-8/2=-4

a=alpha  b=beta

Answered by anu24239
2

ANSWER....

let \:  \alpha  \: and \:  \beta \:   be \: the \: two \: roots \: of  \\ \: the \: equation \:  {x}^{2}  + 8x + 2 \\  \\ where \: a = 1 \\ b = 8 \\ c = 2 \\  \\  \alpha  \:  +  \:  \beta  =  \frac{ - b}{a}  \\  \\  \alpha  +  \beta  =  \frac{ - 8}{1} .......eq(1) \\  \\ ( \alpha ) \times ( \beta ) =  \frac{c}{a}  \\  \\  \alpha  \times  \beta  =  \frac{2}{1} ......eq(2) \\  \\ acc \: to \: your \: question \\  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{ \alpha  +  \beta }{ \alpha  \times  \beta }  \\  \\ put \: the \: value \: eq(1) \: eq(2) \: here \\  \\  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{ - 8}{2}  \\  \\  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  - 4

#TREAT ME LIKE A COMA

#BTS KINGDOM

Similar questions