Math, asked by swastik07omm, 2 months ago

x^2+(a+b+c)X+ab+bc Resolve into factors​

Answers

Answered by priyadeydas2019
0

Answer:

This will be the answer

Step-by-step explanation:

The factorisation of x^2+(a+b+c)x+ab+bcx

2

+(a+b+c)x+ab+bc is equal to (x+b)(x+a+c).(x+b)(x+a+c).

Step-by-step explanation:

We have,

x^2+(a+b+c)x+ab+bcx

2

+(a+b+c)x+ab+bc

To find, the factorisation of x^2+(a+b+c)x+ab+bc=?x

2

+(a+b+c)x+ab+bc=?

∴ x^2+(a+b+c)x+ab+bcx

2

+(a+b+c)x+ab+bc

=x^2+ax+bx+cx+ab+bc=x

2

+ax+bx+cx+ab+bc

=(x^2+bx)+(ax+ab)+(cx+bc)=(x

2

+bx)+(ax+ab)+(cx+bc)

=x(x+b)+a(x+b)+c(x+b)=x(x+b)+a(x+b)+c(x+b)

Taking (x + b) as common, we get

=(x+b)(x+a+c)=(x+b)(x+a+c)

The factorisation of x^2+(a+b+c)x+ab+bc=(x+b)(x+a+c)x

2

+(a+b+c)x+ab+bc=(x+b)(x+a+c) .

Hence, the factorisation of x^2+(a+b+c)x+ab+bcx

2

+(a+b+c)x+ab+bc is equal to (x+b)(x+a+c).(x+b)(x+a+c).

Similar questions