Math, asked by kumaipinki58, 10 months ago

x-2
Polynomial P(x)=x²-ax+5 and
Q(x) = 2x³+5x-(a-3) when divided by
have
same remainders, then a is
equal to:​

Answers

Answered by Anonymous
54

{ \rm { \large \blue{Question \colon}}}

{ \rm{  The \: equation}}

{ \rm{p(x) =  {x}^{2}  - ax + 5}}

{ \rm{q(x) =  {2x}^{3} + 5x - (a - 3) }}

{ \rm{divided \: by \: (x - 2)}}

{ \rm{ \large \blue{Solution}}}

{ \rm{Since  \: x - 2 = 0 \implies x = 2}}

{  \rm{First \: remainder }}

{ \rm{p(x = 2) =  {x}^{2}  - ax + 5}}

{ \rm{  \to  {2}^{2}  - 2x + 5 }}

{ \rm{ \to 4 - 2 a + 5 }}

{ \rm{ \to  - 2a + 9 }}

{ \rm{ \to 9 - 2a}}

{ \rm{Second \: remainder}}

{  \rm{q(x = 2)  = {2x}^{3}  + 5x - (a - 3) }}

{ \rm{ \to  {2 \times 2}^{3} + 5 \times 2 - (a - 3)  }}

{ \rm{ \to 16 + 10 - a + 3 }}

{ \rm{ \to 29 - a }}

{ \rm{the \: value \: of \: a = }}

{ \rm {9 - 2a = 29 - a}}

{ \rm{ \to 9 - 29 =2a - a }}

{ \rm{ \to ( - 20 )= a }}

{ \rm{ \to a = ( - 20)}}

{ \rm{Ans  \colon the \: common \: value \: of \: a  = ( - 20)}}

Similar questions