x^2+px+q(q≠0) is a factor of x^3-ax^2+bx-c..find q(a-p)=?
Answers
P(x)=ax2+bx+c
P(x)=ax2+bx+cHence, for real roots,
P(x)=ax2+bx+cHence, for real roots,b2−4ac≥0
P(x)=ax2+bx+cHence, for real roots,b2−4ac≥0Q(x)=−ax2+dx+c
P(x)=ax2+bx+cHence, for real roots,b2−4ac≥0Q(x)=−ax2+dx+cHence, for real roots,
P(x)=ax2+bx+cHence, for real roots,b2−4ac≥0Q(x)=−ax2+dx+cHence, for real roots,d2+4ac≥0
P(x)=ax2+bx+cHence, for real roots,b2−4ac≥0Q(x)=−ax2+dx+cHence, for real roots,d2+4ac≥0Now,
P(x)=ax2+bx+cHence, for real roots,b2−4ac≥0Q(x)=−ax2+dx+cHence, for real roots,d2+4ac≥0Now, ac=0
P(x)=ax2+bx+cHence, for real roots,b2−4ac≥0Q(x)=−ax2+dx+cHence, for real roots,d2+4ac≥0Now, ac=0Now if ac<0
P(x)=ax2+bx+cHence, for real roots,b2−4ac≥0Q(x)=−ax2+dx+cHence, for real roots,d2+4ac≥0Now, ac=0Now if ac<0Then,
P(x)=ax2+bx+cHence, for real roots,b2−4ac≥0Q(x)=−ax2+dx+cHence, for real roots,d2+4ac≥0Now, ac=0Now if ac<0Then,b2−4ac>0
P(x)=ax2+bx+cHence, for real roots,b2−4ac≥0Q(x)=−ax2+dx+cHence, for real roots,d2+4ac≥0Now, ac=0Now if ac<0Then,b2−4ac>0Hence, P(x).Q(x) has atleast 2 real roots .
P(x)=ax2+bx+cHence, for real roots,b2−4ac≥0Q(x)=−ax2+dx+cHence, for real roots,d2+4ac≥0Now, ac=0Now if ac<0Then,b2−4ac>0Hence, P(x).Q(x) has atleast 2 real roots .If ac>0
P(x)=ax2+bx+cHence, for real roots,b2−4ac≥0Q(x)=−ax2+dx+cHence, for real roots,d2+4ac≥0Now, ac=0Now if ac<0Then,b2−4ac>0Hence, P(x).Q(x) has atleast 2 real roots .If ac>0Then
P(x)=ax2+bx+cHence, for real roots,b2−4ac≥0Q(x)=−ax2+dx+cHence, for real roots,d2+4ac≥0Now, ac=0Now if ac<0Then,b2−4ac>0Hence, P(x).Q(x) has atleast 2 real roots .If ac>0Thend2+4ac>0
P(x)=ax2+bx+cHence, for real roots,b2−4ac≥0Q(x)=−ax2+dx+cHence, for real roots,d2+4ac≥0Now, ac=0Now if ac<0Then,b2−4ac>0Hence, P(x).Q(x) has atleast 2 real roots .If ac>0Thend2+4ac>0Hence, P(x).Q(x) has atleast 2 real roots .