Math, asked by Arish12, 1 year ago

x = 2+ root 3 find x^2 + 1 upon x ^2

Answers

Answered by Sanskriti141
2
ANSWER
========

x = 2 +  \sqrt{3}  \\  \\  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \\  \\ (rationalizing \: the \: denominator \: ) \\  \\  =  >     \frac{1(2 -  \sqrt{3}) }{(2 +  \sqrt{3})(2 -  \sqrt{3} ) }  \\  \\  =  >  \frac{2 -  \sqrt{3} }{( {2}^{2} ) - ( \sqrt{3}^{2} )  }  \\  \\  =  >  \frac{2 -  \sqrt{3} }{4 - 3}  =  >  2 -  \sqrt{3}  \\  \\  \\ to \: find \:  \\  \\ =  >  x +  \frac{1}{x}  \\  \\  =  > 2 +  \sqrt{3}  + 2 -  \sqrt{3}  \\  \\  =  > 4 \\  \\   =  >  x +  \frac{1}{x}  = 4 \\  \\  {(x +  \frac{1}{x} })^{2}  =  {4}^{2}  \\  \\  =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2x (\frac{1}{x} ) = 16 \\  \\   =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 16 \\  \\ =  >   {x}^{2}  +  \frac{1}{ {x}^{2} }  = 16 - 2 \\  \\  =  >  {x}^{2} +  \frac{1}{  {x}^{2}  }   = 14 \:  \:  \:  \:  \:  \: ans

___________________________________

#BE BRAINLY

Anonymous: Sanskriti Awesome answer. :-)
Sanskriti141: thanks broda
Answered by SmãrtyMohït
8
Here is your solution

Given :-

x=2+√3

Now

 \frac{1}{x} = \frac{1}{2 +\sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} } \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{2 {}^{2} - ( \sqrt{3}) {}^{2} } \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{4 - 3} \\ \frac{1}{x} = 2 - \sqrt{3} \\ \\ \\

 x + \frac{1}{x} = 2 - \sqrt{3} + 2 + \sqrt{3} \\ x + \frac{1}{x} = 4 \\ Both \: sides \: squaring. \: \\ (x + \frac{1}{x} ) {}^{2} = 4 {}^{2} \\ x {}^{2} + \frac{1}{x {}^{2} } + 2 = 16 \\ x {}^{2} + \frac{1}{x {}^{2} } = 16 - 2 \\ x {}^{2} + \frac{1}{x {}^{2} } = 14

Hope it helps you

smartyAnushka: nice
Similar questions