x=2+ root 3 find x square + 1/x square...?
Answers
Answered by
1
Answer:
Here is your solution
Given :-
x=2+√3
Now
\frac{1}{x} = \frac{1}{2 +\sqrt{3} } \times \frac{2 -\sqrt{3} }{2 - \sqrt{3} } \\ \frac{1}{x} = \frac{2 + \sqrt{3} }{2 {}^{2} - ( \sqrt{3}) {}^{2} } \\ \frac{1}{x} = \frac{2 + \sqrt{3} }{4 - 3} \\ \frac{1}{x} = 2 - \sqrt{3} \\ \\ \\
x + \frac{1}{x} = 2 - \sqrt{3} + 2 + \sqrt{3} \\ x + \frac{1}{x} = 4 \\ Both \: sides \: squaring. \: \\ (x + \frac{1}{x} ) {}^{2} = 4 {}^{2} \\ x {}^{2} + \frac{1}{x {}^{2} } + 2 = 16 \\ x {}^{2} + \frac{1}{x {}^{2} } = 16 - 2 \\ x {}^{2} + \frac{1}{x {}^{2} } = 14
Answered by
9
Answer:
hope this helps you please mark as brainliest,follow me
Similar questions