Math, asked by yuvrajmeena802, 8 months ago

x=2+ root 3 find x square + 1/x square...?​

Answers

Answered by raginikri2007
1

Answer:

Here is your solution

Given :-

x=2+√3

Now

\frac{1}{x} = \frac{1}{2 +\sqrt{3} } \times \frac{2 -\sqrt{3} }{2 - \sqrt{3} } \\ \frac{1}{x} = \frac{2 + \sqrt{3} }{2 {}^{2} - ( \sqrt{3}) {}^{2} } \\ \frac{1}{x} = \frac{2 + \sqrt{3} }{4 - 3} \\ \frac{1}{x} = 2 - \sqrt{3} \\ \\ \\

x + \frac{1}{x} = 2 - \sqrt{3} + 2 + \sqrt{3} \\ x + \frac{1}{x} = 4 \\ Both \: sides \: squaring. \: \\ (x + \frac{1}{x} ) {}^{2} = 4 {}^{2} \\ x {}^{2} + \frac{1}{x {}^{2} } + 2 = 16 \\ x {}^{2} + \frac{1}{x {}^{2} } = 16 - 2 \\ x {}^{2} + \frac{1}{x {}^{2} } = 14

Answered by ƁƦƛƖƝԼƳƜƛƦƦƖƠƦ
9

Answer:

x = 2 +  \sqrt{3}

 {x}^{2}  +  \frac{1}{ {x}^{2} }  =

 \frac{2 +  \sqrt{3} }{1}  +  \frac{1}{2 +  \sqrt{3} }

 \boxed{\green{rationalise \: the \: denominator: - }}

 \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

 =  \frac{2 -  \sqrt{3} }{ {2}^{2}  -  { \sqrt{3} }^{2} }

 =  \frac{2 -  \sqrt{3} }{4 - 3}

 = 2 -  \sqrt{3}

  \huge\red{ -  -  -  -  -  - --- -  }

2 +  \sqrt{3}  + 2 -  \sqrt{3}

 =  > 2 + 2

 \boxed{ =  =  > 4}

\huge\red{ -  -  -  -  -  - --- -  }

 \huge \underline { \underline \blue{note :  - }}

 \boxed{ \purple{ {a}^{2}  +  {b}^{2}  = (a + b)(a - b)}}

if \: we \: have \: to \: add \: two \: rational \\ number \: then \: we \: should \\ rationalise \: the \: denominator.

\huge\red{ -  -  -  -  -  -  ---  }

hope this helps you please mark as brainliest,follow me

Similar questions