Math, asked by varunkrsinghfg, 4 months ago

X = (2+root 5)^1/2+(2- root 5)^1/2 and Y=

Answers

Answered by gaganacn3
0

Step-by-step explanation:

Question :

If x=(2+\sqrt{5}){}^{\frac{1}{2}}+(2-\sqrt{5}){}^{\frac{1}{2}}(2+

5

)

2

1

+(2−

5

)

2

1

and y=(2+\sqrt{5}){}^{\frac{1}{2}}-(2-\sqrt{5}){}^{\frac{1}{2}}(2+

5

)

2

1

−(2−

5

)

2

1

Then evaluate x{}^{2}+y{}^{2}x

2

+y

2

Formula used :

1)(x + y) {}^{2} = x {}^{2} + y {}^{2} - 2xy1)(x+y)

2

=x

2

+y

2

−2xy

2)(x - y) {}^{2} = x {}^{2} + y {}^{2} - 2xy2)(x−y)

2

=x

2

+y

2

−2xy

3)x {}^{2} - y {}^{2} = (x + y)(x - y)3)x

2

−y

2

=(x+y)(x−y)

Solution :

we to find the value of x{}^{2}+y{}^{2}x

2

+y

2

x=(2+\sqrt{5}){}^{\frac{1}{2}}+(2-\sqrt{5}){}^{\frac{1}{2}}(2+

5

)

2

1

+(2−

5

)

2

1

Now squaring on both sides

x{}^{2} = (( \sqrt{2 + \sqrt{5} }) +( \sqrt{2 - \sqrt{5} } )) {}^{2}x

2

=((

2+

5

)+(

2−

5

))

2

x { }^{2} = 2 + \sqrt{5} + 2 - \sqrt{5} + 2 \sqrt{2 + \sqrt{5} } \times \sqrt{2 - \sqrt{5} }x

2

=2+

5

+2−

5

+2

2+

5

×

2−

5

x{}^{2}= 4 + 2 \times \sqrt{2 + \sqrt{5} } \times \sqrt{2 - \sqrt{5} } ...(1)x

2

=4+2×

2+

5

×

2−

5

...(1)

y=(2+\sqrt{5}){}^{\frac{1}{2}}-(2-\sqrt{5}){}^{\frac{1}{2}}(2+

5

)

2

1

−(2−

5

)

2

1

Squaring on both sides

y {}^{2} = (( \sqrt{2 + \sqrt{5} } ) - \sqrt{2 - \sqrt{5} } )) {}^{2}y

2

=((

2+

5

)−

2−

5

))

2

y {}^{2} = 2 + \sqrt{5} + 2 - \sqrt{5} - 2 \times \sqrt{2 + \sqrt{5} } \times \sqrt{2 - \sqrt{5} }y

2

=2+

5

+2−

5

−2×

2+

5

×

2−

5

y{}^{2} = 4 - 2 \times \sqrt{2 + \sqrt{5} } \times \sqrt{2 - \sqrt{5} } ...(2)y

2

=4−2×

2+

5

×

2−

5

...(2)

___________________________

Now add equation (1)&(2)

x {}^{2} + y {}^{2} = 4 - 2 \times \sqrt{2 + \sqrt{5} } \times \sqrt{2 - \sqrt{5} } + 4 - 2 \times \sqrt{2 + \sqrt{5} } \times \sqrt{2 - \sqrt{5} }x

2

+y

2

=4−2×

2+

5

×

2−

5

+4−2×

2+

5

×

2−

5

\implies \: x {}^{2} + y {}^{2} = 8⟹x

2

+y

2

=8

which is the required solution!

Similar questions