Physics, asked by swatejabagal16, 8 months ago

x^2 tanx derivaties of functions​

Answers

Answered by kaushik05
2

To differentiate:

 \star \:  {x}^{2}  tan \: x

Here we use the product formula of differentiation:

 \star \boxed{ \red{\bold{  \frac{d}{dx} uv = u \:  \frac{dv}{dx}  + v \:  \frac{du}{dx} }}}

 \implies \:  \frac{d}{dx} ( {x}^{2}  \tan \: x) \\  \\  \implies \:  {x}^{2}  \frac{d}{dx} ( \tan \: x) +  \tan \: x \:   \frac{d}{dx} ( {x}^{2} ) \\  \\  \implies \:  {x}^{2}  \:  { \sec}^{2} x +  \tan \: x(2x) \\  \\  \implies \:  {x}^{2}  \:  { \sec}^{2} x + 2x \tan \: x

Formula :

 \star \bold{ \blue{  \frac{d}{dx}  {x}^{n}  = n {x}^{n - 1} }} \\

 \star \bold{ \blue{ \frac{d}{dx}  \tan \: x =  { \sec}^{2} x}} \\

Answered by parry8016
2

Explanation:

HERE IS U R ANSWER DEAR PLZ FOLLW ME

Attachments:
Similar questions