Math, asked by ekku21, 10 months ago

x^2+x+1/√2=0 Solve the following equation​

Answers

Answered by amitkumar44481
4

Solution :

We have, Equation.

 \tt \dagger  \:  \:  \:  \:  \:  {x}^{2}  + x +  \dfrac{1}{ \sqrt{2} }  = 0.

Compare with General Formula.

 \tt \dagger \:  \:  \:  \:  \: a {x}^{2} + bx + c  = 0.

 \tt \dagger \:  \:  \:  \:  \:  \red {a  \neq 0.}

A/Q,

 \tt : \implies  {x}^{2}  + x +  \dfrac{1}{ \sqrt{2} }  = 0.

 \tt : \implies   \dfrac{ \sqrt{2 }  {x}^{2} +  \sqrt{2}x + 1  }{ \sqrt{2} }  = 0.

 \tt : \implies   \sqrt{2}  {x}^{2}  +  \sqrt{2} x + 1 = 0.

Where as,

  • a = √2.
  • b = √2.
  • c = 1.

 \tt \dagger \:  \:  \:  \:  \: x =  \dfrac{ - b \pm  \sqrt{ {b}^{2}  - 4ac} }{2a}

 \tt : \implies    \dfrac{ -  \sqrt{2}  \pm \sqrt{ { (\sqrt{2}) }^{2}  - 4 \times  \sqrt{2}  \times 1}  }{2 \sqrt{2} }

 \tt : \implies    \dfrac{ -  \sqrt{2}  \pm \sqrt{ { 2}  - 4 \sqrt{2} }  }{2 \sqrt{2} }

Similar questions