Math, asked by afro4583, 4 days ago

X^2 + x/√2 + 1=0 Class 11 complex num

Answers

Answered by mathdude500
26

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\: {x}^{2} + \dfrac{x}{ \sqrt{2} } + 1 = 0

can be rewritten as

\rm :\longmapsto\: \sqrt{2} {x}^{2} + x +  \sqrt{2} = 0

So, on comparing with quadratic equation ax² + bx + c = 0, we get

\red{\rm :\longmapsto\:a =  \sqrt{2}}

\red{\rm :\longmapsto\:b =  1}

\red{\rm :\longmapsto\:c =   \sqrt{2} }

Let first evaluate the Discriminant, D of the quadratic equation which is given by

 \blue{\rm :\longmapsto\:D =  {b}^{2} - 4ac \: }

On substituting the values of a, b and c, we get

 \blue{\rm :\longmapsto\:D =  {1}^{2} - 4( \sqrt{2}) \:  ( \sqrt{2})\: }

 \blue{\rm :\longmapsto\:D =  1 - 8\: }

 \blue{\rm :\longmapsto\:D = - 7\: }

Since, D < 0, it implies equation has imaginary or complex roots.

So, Roots of quadratic equation is given by

 \green{\rm :\longmapsto\:x = \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac}}{2a} \: }

OR

 \green{\rm :\longmapsto\:x = \dfrac{ - b \:  \pm \:  \sqrt{D}}{2a} \: }

So, on substituting the values of a, b and D, we get

 \green{\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ - 7}}{2 \sqrt{2} } \: }

 \green{\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \: i \:  \sqrt{7}}{2 \sqrt{2} } \: }

 \green{\rm \implies\:\boxed{ \tt{ \: x = \dfrac{ - 1 + i \sqrt{7} }{2 \sqrt{2} }  \: or \: \dfrac{ - 1 -  i\sqrt{7} }{2 \sqrt{2} } }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by MathCracker
38

Question :-

 \rm{x {}^{2} +  \frac{x}{ \sqrt{2}  } + 1 = 0  } \\ Class 11 complex number.

Answer :-

\small{\boxed{\tt{x = \frac{ - 1 +i  \sqrt{7 } }{2 \sqrt{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \: or  \:  \:  \: \:  \:  \:  \:  \:  \: x =  \frac{ - 1 - i \sqrt{7} }{2 \sqrt{2} }  }}}

Step by step explanation :-

Given Equation :

\rm:\longmapsto{x {}^{2} +  \frac{x}{ \sqrt{2} } + 1 = 0  } \\

Multiplying the equation by 2

\rm:\longmapsto{ \sqrt{2}x {}^{2}  + x +  \sqrt{2}  = 0 }

Comparing the equation with ax² + bx + c,

  • a = √2
  • b = 1
  • c = √2

The Quadratic Formula,

\tt:\longmapsto{x =  \frac{ - b \pm \sqrt{b {}^{2}  - 4ac} }{2a} } \\

Substituting a, b and c in the Quadratic formula,

\rm:\longmapsto{x =  \frac{ - 1 \pm \sqrt{(1) {}^{2}  - 4( \sqrt{2} )( \sqrt{2})} }{2( \sqrt{2}) } } \\  \\\rm:\longmapsto{x =  \frac{ - 1 \pm \sqrt{1 - 4(2)} }{ 2\sqrt{2} } }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \rm:\longmapsto{x =  \frac{ - 1  \pm \sqrt{ - 7} }{2 \sqrt{2} } } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

We know that,

\tt:\longmapsto{i =  \sqrt{ - 1} }

Hence,

  \: \small{\boxed{\tt{x = \frac{ - 1 +i  \sqrt{7 } }{2 \sqrt{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \: or  \:  \:  \: \:  \:  \:  \:  \:  \: x =  \frac{ - 1 - i \sqrt{7} }{2 \sqrt{2} }  }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more from brainly :

If a is one imaginery root of x^(2)-1=0 then the equation whone roos are a+a^(4) a^(2)+a' in A) x^(2)-x-1=0 B) x^(2)+x-1=0 C) x^(2)-x+1=0 D) x^(2)+x+1=0.

https://brainly.in/question/41984889

Similar questions